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Abstract

Cosmological fine-tuning has traditionally been associated with the narrowness of the intervals in which the parameters of the physical models must be located to make life possible. A more thorough
approach focuses on the probability of the interval, not on its size. We present a framework to measure tuning that, among others, deals with the normalization problem, assuming that the prior distribution
belongs to a class of maximum entropy (maxent) distributions. By analyzing an upper bound of the tuning probability for this class of distributions the method solves the so-called weak anthropic principle,
and offer a solution, at least in this context, to the well-known lack of invariance of maxent distributions. The implication of this approach is that, since all mathematical models need parameters, tuning is
not only a question of natural science, but also a problem of mathematical modeling. Therefore, whenever a mathematical model is used to describe nature, not only in physics but in all of science, tuning is
present. And the question of whether the tuning is fine or coarse for a given parameter — if the interval in which the parameter is located has low or high probability, respectively — depends crucially not
only on the interval but also on the assumed class of prior distributions. Novel upper bounds for tuning probabilities are presented [Dıéaz-Pachón et al. 2022].

Problems measuring fine-tuning

Normalization: Bernoulli’s Principle of Insufficient Reason cannot be invoked since relevant
fine-tuning spaces often have infinite cardinality [McGrew et al. 2001].

Weak anthropic principle: We live in a habitable universe, therefore we are constrained in
our sample of size 1 to only observe values that permit life [Bostrom 2002].

A single maxent distribution is considered [McGrew 2018].

Lack of invariance of maxent: Maximum entropy distributions are not invariant to
transformations [Koperski 2005].

Four-step procedure [D́ıaz-Pachón et al. 2021]
1 Determine the sample space Ω.

2 Determine the moments constraints of the distribution E[Mi(X)] = θi for
i = 1, . . . , d

3 Find the family F of maxent distributions F .

4 Find the maximum probability. Take TPmax = max{F (I) : F ∈ F}.

Theorem 1: Maximal tuning probabilities given certain constraints

Ω F Θ Constraint TPmax

Scale R+ ϵ ≪ 1 2ϵC1

R+ Form and scale R+ × R+ None 1

Form and scale R+ × R+ SNR ≤ S, ϵ ≪ 1, ϵ
√
S ≪ 1, S ≫ 1 2ϵ

√
S/(2π)

Scale R+ 0 /∈ IX, ϵ ≪ 1 2ϵC1

Scale R+ 0 ∈ IX 1
Location R C3 ≪ 1/ϵ, ϵ ≪ 1 2ϵC3

R Location R None 1

Location and scale R× R+ SNR ≤ S, ϵ ≪ 1, ϵ
√
S ≪ 1 2ϵ(C3

√
S + C1)

Location and scale R× R+ None 1
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Figure 1. Example with normal distribution: When the variance σ2 of the prior distribution of X approaches 0, the
normal distribution approaches a Dirac delta measure at µ; thus µ ∈ I , implies TPmax = 1 (left). On the other hand,
when µ /∈ I , TPmax will go to zero either when σ → 0 or when σ → ∞. Therefore TPmax is strictly less than 1 (right).
For the figure at the left, the detected tuning is coarse, whereas for the figure at the right it is fine.

Left figure: very small intervals with very large probability.

Tails of distribution: large intervals with small probability.

Probability matters, not size!

Implications of the procedure

Normalization solved. The method does not assume the principle of insufficient reason, but
the more general principle of maximum entropy.

Weak anthropic principle solved. A family of maxent is considered, not only that of our
universe.

Lack of invariance of maxent distributions solved. By an appropriate selection of
constraints in Step 2.

Unique maxent distribution solved. A family F of maxent distributions is considered in
Step 3.

No false positives. When the method detects fine-tuning (TPmax is small), there is
fine-tuning.

False negatives. When coarse-tuning is detected (TPmax is large), the method is inconclusive.

Example 1: Critical density of the universe

According to Paul Davies 1982, the critical density of the universe ρcrit cannot take values outside
the interval

Iρcrit = ρcrit[1− 10−60, 1 + 10−60].

Since the density cannot be negative, Ω = R+.

For ϵ = 10−60, ϵ ≪ 1.

1 Scale family: There is fine-tuning, since TPmax = 2× 10−60C1.

2 Form and scale (I). Provided the signal-to-noise ratio of the prior is bounded above by S and√
S ≪ 1060, then TPmax = 2× 10−60

√
S/2π, there is fine-tuning.

3 Form and scale (II). There is coarse-tuning detected, since TPmax = 1.

Example 2: Gravitational force

According to Davies 1982, when observing the ratio X of the gravitational constant Gobs to the
contribution from vacuum energy to the cosmological constant Λvac, gravitation cannot fall outside
the life-permitting interval

IX = xobs
[
1− 10−100, 1 + 10−100

]
.

Then taking ϵ = 10−100,

If gravitation can only be attractive, Ω = R+.
If gravitation can also be repulsive [Barnes 2012], Ω = R, and
1 For the scale family, since 0 /∈ IX, there is fine-tuning: TPmax = 2× 10−100C1

2 For the location family there is fine-tuning when C3 ≪ 10100, since TPmax = 2× 10−100C3.
3 For the location and scale family there is fine-tuning when S ≪ 10200, since

TPmax = 2× 10−100(C3

√
S + C1).

In all other cases coarse-tuning is detected.

Example 3: Amplitude of primordial fluctuations

According to Martin Rees 2000, the amplitude of the primordial fluctuations must be in the interval

IQ =
[
10−6, 10−5

]
.

Since the amplitude cannot be negative, Ω = R+. Also ϵ ≫ 0.
The theorem does not apply!
However, assuming an exponential distribution,

TPmax ≈ 0.697. (1)

Conclusions

1 Versatile approach. It works with the current constants of nature and standard models . . . or
with others.

2 A problem of mathematical modeling. Tuning analysis is a problem of mathematical
modeling, not exclusively pertaining to cosmology.

3 Reconfiguration of the tuning problem. Tuning analysis is about probability, not the size
of intervals.
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