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Abstract

In the context of population genetics, active information can be extended to

measure the change of information of a given event (e.g., fixation of an allele)

from a neutral model in which only genetic drift is taken into account to a

non-neutral model that includes other sources of frequency variation (e.g.,

selection and mutation). In this paper we illustrate active information in

population genetics through the Wright-Fisher model.

Keywords: Active information, maximum entropy, Wright-Fisher model,

coalescence.

1. Introduction

Stochastic processes have historically been closely related to the study of

biological populations. In fact, biological applications have been central to
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the development of concepts that are today at the core of probability and

statistics. At the beginning of the twentieth century, in a quest to mathe-

matize Darwin’s model, Ronald Fisher developed fundamental concepts of

statistical inference, and also the basic stochastic process in the analysis

of population genetics [13]. Fisher has been crowned “the greatest of Dar-

win’s successors” [9]. His theory, together with Sewall Wright’s contributions,

served to develop what was subsequently dubbed the Wright-Fisher model

and is the focus of this paper.

Interestingly, as central as information has been to genetics since the

discovery of DNA and protein synthesis, information theory has been almost

universally neglected in the stochastic theory of population genetics. We

introduce it here from the perspective of active information under maximum

entropy [6]. Our main goal is to measure the information change in an event

when we jump from the neutral Wright-Fisher model, in which the only

“force” in operation is genetic drift, to the non-neutral Wright-Fisher model

with mutations and selection. In some instances this active information is

positive and large, making selection and mutation not free lunches in the

sense of Wolpert & MacReady [20].

In general, active information is a measure of the degree to which a process

deviates from equilibrium. In particular, when it is positive, it measures the

amount of guiding information needed to achieve success in certain stochastic

searches [5, 11, 17]. Active information has been applied to analysis of soft-

ware and modeling attempts to simulate evolution including programs named

AVIDA [16], EV [19] and Metabiology [3]. Each model works only because

external information has been applied to guide the program to success. In
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subsequent studies critiquing of these models, significant active information

has been shown to be required for the success of AVIDA [10], EV [18], and

Metabiology [12].

To our knowledge, this paper is the first application of active information

to population genetics and the first application of generalized active informa-

tion [6] anywhere. Our analysis opens the door to further research on more

sophisticated models of population genetics.

2. The Wright-Fisher model

In the simplest scenario, the neutral Wright-Fisher model (see, e.g., [7, 8]),

there are N individuals of a haploid population (i.e., each individual has a

single copy of each gene), and each gene has two types of alleles: A and

a. All individuals of generation n are replaced in the following generation

n + 1 according to a sampling with replacement among all individuals in

generation n. In other words, if there are i individuals with the A allele in

generation n, then the probability of having j individuals with that same

allele in generation n+ 1 is binomial with parameters N and i/N :

pn,n+1(i, j) =

(
N

j

)(
i

N

)j (
1− i

N

)N−j
. (1)

This type of model is sometimes called the forward model because it is focuses

on future offspring.

The behavior of future generations depends on the initial distribution.

In the absence of any additional knowledge, we assume the N elements are

chosen to be either of type A or type a with equal probability, so that the null

probability of j alleles being of type A in the first generation is, according
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to the principle of maximum entropy and assuming that both alleles a and

A are present at time 0,

p0(i) =
1

N − 1
, (2)

for i = {1, . . . , N − 1}. In fact, it can be shown that the number of A alleles

has this distribution, conditionally on the event that both alleles a and A

have coexisted for a long time, so that none of them has been lost (see, e.g.,

[4, Chapter 8.4]).

The only “force” in the neutral Wright-Fisher model with offspring prob-

ability given by (1) is genetic drift; i.e., the changes in alleles proportion from

generation to generation are due to genetic drift. The incorporation of selec-

tion and mutation (i.e., a purely Darwinian process) is not imposed in (1).

Following Etheridge [8], we will introduce these two by steps. Notice from

(1) that the neutral probability of sampling A is i/N , and the neutral prob-

ability of sampling a is 1− i/N . When we introduce a selection coefficient s

these probabilties are modified as follows:

P[A is sampled] = i(1+s)
i(1+s)+N−i and P[a is sampled] = N−i

i(1+s)+N−i . (3)

Thus, with respect to (1), when s is positive, A is favored in the sampling, in

whose case A is said to be beneficial ; on the other hand, when s is negative,

A is not favored in the sampling, in whose case A is said to be deleterious.

When s = 0, we go back to the original drift-only scenario.

Now, suppose that every individual of type A mutates to a with proba-

bility µ1, and every individual of type a mutates to A with probability µ2. In

this case, after adding both selection and mutation, the expected proportion
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of type A offspring in the next generation is given by

θi =
i(1 + s)(1− µ1)

i(1 + s) +N − i
+

(N − i)µ2

i(1 + s) +N − i
. (4)

Notice that the first term at the RHS of (4) corresponds to the probability of

sampling A in (3) multiplied by (1−µ1); that is, it considers the type-A indi-

viduals that did not mutate to a. Analogously, the second term corresponds

to the probability of sampling a multiplied by µ2; that is, it considers the

proportion of type-a individuals that mutated to A. The two terms added

in (4) give the proportion of type-A individuals in the next generation.

We know from (1) that, given i individuals of type A at time n, the

conditional distribution of type A individuals at time n + 1 is Bin(N, i/N).

The addition of selection and mutation changes the conditional distribution

to Bin(N, θi), where θi is as in (4). This is the so-called Wright-Fisher model

with selection and mutation.

2.1. Active information in the Wright-Fisher model

For the Wright-Fisher model, let ψ ∼Bin(N, i/N) and ϕ ∼Bin(N, θi)

be the r.v.’s obtained for the neutral and the non-neutral models described

above, respectively.1 Let the target T be a given event under observation in

the space {0, . . . , N}. Conditioned on having i type-A alleles in the present,

the endogenous information, IΩ, is the Shannon information associated with

the probability ψ of reaching a target T under an assumption of neutrality.

When neutrality is disregarded, the probability of reaching T changes

and the Shannon information it generates is called exogenous information,

1We here have reversed the order of notation with respect to [6].
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I1. The amount by which this information has changed from neutrality to

non-neutrality,

I+ = IΩ − I1, (5)

is the active information. It can be positive, negative or zero. Active in-

formation will be negative when the non-neutral model performs worse than

the neutral one, in terms of finding the target T .

Lemma 1. i.) The active information of the success event of drawing one

single A allele (with probability i/N) of the Wright-Fisher model with

selection and mutation, referenced to the neutral model, is given by

I+ = log θi
i/N

.

ii.) In particular, when we add only selection but no mutations, the active

information becomes

I+ = log
N +Ns

N + is
. (6)

Remark 1. This computation of active information in Lemma 1 refers to one

child drawing an allele from a pool of i A-alleles and N − i a-alleles. This

corresponds to Ω = {a,A} and T = {A}. In this case ψ(A) = i/N is not

uniform, but it can still be motivated as a ‘maxent procedure’, since the

child draws the parent according to a uniform distribution from a pool of N

parents.

Proof. i. Note that the endogenous information of the success event is given

by IΩ = − log(i/N), and the exogenous information of that same event is

I1 = − log θi. To obtain the active information just apply (5).
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ii. Replace the actual values of (3) in part i :

I+ = log

i(1+s)
i(1+s)+N−i

i
N

= log

i(1+s)
N+is
i
N

= log
N +Ns

N + is
.

For N > i, from part ii. of Lemma 1, we see that the active information

of success is positive whenever s is positive, and it is negative whenever s is

negative. It is zero when s = 0.

Lemma 2. Let ϕ ∼Bin(N, θi) and ψ ∼Bin(N, i/N). Let also T be the event

that, conditioned on having i type A alleles in the present, we obtain j type

A alleles in the next generation. Then

I+(ϕ|ψ)(T ) = j log

(
θi
i
N

)
+ (N − j) log

(
1− θi
1− i

N

)
.

In particular, when µ1 = µ2 = 0, the active information becomes

I+(ϕ|ψ)(T ) = j log(1 + s) +N log

(
N

N + is

)
.

Proof.

I+(ϕ|ψ)(T ) = log

(
θji (1− θi)N−j(
i
N

)j (
1− i

N

)N−j
)

= log

((
θi
i
N

)j (
1− θi
1− i

N

)N−j)

= j log

(
θi
i
N

)
+ (N − j) log

(
1− θi
1− i

N

)
.
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To see the particular case, we replace θi by the probability of sampling A in

(3) to obtain:

I+(ϕ|ψ)(T ) = j log

(
i(1+s)
N+is
i
N

)
+ (N − j) log

(
N−i
N+is
N−i
N

)

= j log

(
N(1 + s)

N + is

)
+ (N − j) log

(
N

N + is

)
= j log(1 + s) +N log

(
N

N + is

)
.

Conveniently, it is easier to calculate the active information of the event

T than the individual probabilities ϕ(T ) and φ(T ), since the combinations(
N
j

)
cancel out in the argument of the logarithm.

Corollary 1. When mutations are absent and selection is present, the active

information of fixation of the type A-allele in generation n + 1, given that

there are i type A-alleles in generation n (i.e., that j = N in generation

n+ 1, given that the proportion of A alleles in generation n is i/N), is

I+ = N log

(
N +Ns

N + is

)
. (7)

Remark 2. Notice that the active information in (7) is N times the active

information in (6).

This is a fixation probability of A in a single step, which is highly unlikely

unless i ≈ N in generation n. A more interesting result has to do with the

eventual fixation of A, but the calculation of this probability, particularly

for the model with selection and mutation, is extremely complicated. In this

case, the best strategy is to approximate the process with a diffusion, as we

do in the next subsection.

8



2.2. Active information for the Wright-Fisher model in the limit

The neutral Wright-Fisher model is a Markov chain with state space

given by {0, 1, . . . , N} and transition probabilities as in (1). The states 0

and N are absorbing, meaning that once the chain enters in one of these

two states, it cannot leave. When the chain enters the state N , it means

that A has become fixed. When the chain enters the state 0, A goes extinct

and a is fixed. The conditional probability of fixation of A, given that there

are i alleles of type A at the present, is i/N [7]. However, this fixation

probability and other calculations are extremely complicated when selection

and mutations are present and the distribution is as in ϕ. For this reason, it

is customary to look for diffusion approximations.

A one-dimensional diffusion is a strong Markov process on R with con-

tinuous paths (see e.g. [15]). A diffusion {Xt}t≥0 can be expressed as the

solution of a stochastic differential equation driven by a Brownian motion

with appropriate boundary conditions:

dXt = µ(Xt)dt+ σ(Xt)dBt, (8)

where Bt is a Brownian motion, and µ(x) and σ2(x) are called the infinitesi-

mal drift and variance of the diffusion. The limiting diffusion of the Wright-

Fisher model with selection and mutation is given by (see [8, Lemma 5.5]):

µ(p) = αp(1− p)− v1p+ v2(1− p) (9)

σ2(p) = p(1− p). (10)

For this limiting diffusion, time has been rescaled to units of N generations:

α = Ns, v1 = Nµ1, v2 = Nµ2, and p is the proportion of type A individuals
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in the population. In the absence of mutations (v1 = v2 = 0), the conditional

probability of fixation is given by Etheridge ([8], p. 68):

Lemma 3. Suppose that there is no mutation (v1 = v2 = 0). If the initial

proportion of A-alleles is p0, the probability pfix(p0) that the A-allele eventu-

ally fixes in the population (that is the diffusion is absorbed in p = 1) is

pfix(p0) =


1−exp(−2αp0)
1−exp(−2α)

if α 6= 0,

p0 if α = 0.

(11)

From Lemma 3, the next Corollary follows directly:

Corollary 2. Under the same conditions as before, let T be the event that,

given that there is an initial proportion p0 of A-alleles, the conditional event

that the A-allele gets fixed is

I+(T ) = log

1−exp(−2αp0)
1−exp(−2α)

p0

. (12)

Notice that at fixation the search space becomes Ω = {0, 1}, and the

target is T = {1}.

Of course, once we add mutation, fixation loses all meaning. With muta-

tions, there are no absorbing states in the Markov chain. If a selected allele

arises through mutation in an otherwise neutral population, then its actual

frequency is 1/N , so with a little abuse of notation, still calling pfix(·) the

first time that the mutated allele has frequency 1, we obtain

pfix

(
1

N

)
=

1− e−2s

1− e−2Ns
.

In this scenario, Etheridge [8] considers three interesting cases:
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1. Deleterious alleles: s < 0. If |s| � 1, and N |s| � 1, then pfix(1/N) ≈

2|s|e−2N |s|. The fixation probability of a deleterious allele is exponen-

tially small and it decreases with increasing population size.

2. Beneficial alleles: s > 0. If s � 1, Ns � 1, then pfix(1/N) ≈ 2s,

almost independent of population size.

3. Nearly neutral alleles: If N |s| � 1, then A is nearly neutral and

pfix(1/N) ≈ 1/N .

For these three cases, the active information with respect to the neutral

model is given respectively by

1. Deleterious alleles: I+ ≈ log
(
2N |s|e−2N |s|). If we measure the infor-

mation in nats, it becomes I+ = −2N |s|+ ln(2N |s|) < 0.

2. Beneficial alleles: I+ ≈ log 2Ns > 0. In spite of the probability of

fixation being almost independent of population size, active information

is dependent on population size.

3. Nearly neutral alleles: I+ ≈ 0.

Thus, although most alleles (beneficial or deleterious) are lost, “fitness differ-

ences that are too small to be measured in the laboratory (|s| < 1) can still

play an important role in evolution (if N |s| � 1)” [8]. This important role is

made explicit by the active information measure. In fact, except on the case

of nearly neutral alleles, the population size plays a very important role: for

the deleterious case, it makes the active information to decrease linearly in

N ; and for the beneficial allele, it makes the active information to increase

logarithmically in N .
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3. Active information over nonnegative reals: Coalescence

The geometric distribution with mean µ possesses maximum entropy

among all distributions over the nonnegative integers with specified mean

µ. Letting τ ∼ Geom(1/µ) and calling ψµ its distribution, this means that,

if we have a search space Ω = {1, 2, · · · } and our only knowledge is that we

are looking at a target T ⊂ Ω according to a distribution with mean µ, every

representation of the search of T must start with the null (endogenous) infor-

mation in terms of τ , it is the equilibrium from which the active information

will be measured (see Table 1 of [6]).

This sets the stage to think backwards of the Wright-Fisher model as

the genealogy of a population instead of its offspring. Assume that our prior

knowledge is that the population has size N . Then, since each new generation

is obtained after a sampling with replacement, the probability of two given

individuals at the present generation sharing the same father is 1/N .

Defining T := {τ = k}, for k ∈ Z+, we obtain that the probability of a

common ancestor k generations before is given by a geometric distribution

with mean N :

ψ(T ) =

(
1− 1

N

)k−1
1

N
, (13)

and the endogenous information is IΩ = − logψ(T ). Suppose that after

further analysis we obtain knowledge that the population is actually of size

ν 6= N . This defines an alternative search that uses − logϕ(T ) bits of infor-

mation, where ϕ is the mass density of a geometrically distributed r.v. with
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mean ν. The active information measured in nats becomes

I+(ϕ|ψ)(T ) = log

(
1− 1

ν

)k−1 1
ν(

1− 1
N

)k−1 1
N

= log

{(
1− 1

ν

1− 1
N

)k−1
N

ν

}

= log

{(
1− 1

ν

1− 1
N

)k
N − 1

ν − 1

}
If we rescale k = dN and take ν to be O(N), then there is 0 < c < ∞ such

that ν ≈ cN when N is large, and the active information becomes

I+(ϕ|ψ) ≈
(

1− 1

c

)
d− log c, (14)

which is a linear function of d. From this we notice that the limiting active

information is positive for large d when ν > N , i.e. c > 1. On the contrary,

the limiting active information is negative (positive) for small d when ν > N

(ν < N), i.e. c > 1 (c < 1). This corresponds to our intuition. For instance,

if tilting increases the size of the population (c > 1), then we expect longer

coalescence times, and this make it easier (more difficult) to find targets that

correspond to unusually large (small) coalescence times.

A natural extension of this model is to consider a geometric distribution

with success probability λ = 1/N , which, as N grows, approaches an ex-

ponential distribution with intensity λ. The exponential distribution is also

the maxent distribution over the set of all distributions with support on the

nonnegative reals and intensity λ (see Table 1 of [6]). Then, when our only

knowledge of a search is that it is done on {0} ∪ R+ and that it has a finite

mean µ = λ−1 = N , [6] tells us that our endogenous search must be guided

by an exponential r.v. with mean µ.

13



Consider the Wright-Fisher model and assume we are taking N genera-

tions as our unit of time (i.e., just like 1 minute has 60 seconds, one unit of

time here has N generations), then, going backwards, the time to go from i

lineages to i−1 is exponential with intensity i(i−1)/2 and mean 2/[i(i−1)].

(J. F. C. Kingman was the first to develop the coalescent in [14]; Berestycki

has an excellent material explaining where the current research is [2].)

Any change in the distribution, as usual, is contributing information for

faster or slower coalescence. To see this, define the event T = “The time

to coalescence from i to i − 1 lineages is more than t.” Then any other

distribution altering the target, say another exponential with different mean

µ, is adding

I+(T ) = log
exp

{
− 1
µ
t
}

exp
{
− i(i−1)t

2

}
=
i(i− 1)t

2
− 1

µ
t

= t

(
i(i− 1)

2
− 1

µ

)
nats of information. Thus, in the same lines of the discrete situation, when

µ = 2
i(i−1)

c, which corresponds to the rescaled coalescence time in units of N

for a population of size cN , the active information becomes

I+(T ) =
i(i− 1)t

2

(
1− 1

c

)
.

Thus, the active information is positive when µ > 2
i(i−1)

and negative

when µ < 2
i(i−1)

. As expected, as long as we are considering another expo-

nential distribution, shrinking the mean of the exogeneous search will lessen

the probability that the coalescence time is large, whereas augmenting the

former will increase the probability of the latter.
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4. Conclusion

Generalized active information is well-suited to measure the amount of

information introduced in a population genetics model when neutral models

are replaced by non-neutral ones. In this paper, we focused on the Wright-

Fisher model, studying how much information is added by the Darwinian

paradigm (considering selection and mutations) with respect to a neutral

model that only takes into account genetic drift. Other variation sources

(e.g., recombination) can be considered in order to determine the amount of

information they introduce to the analysis.

The Wright-Fisher model is the basic introductory model of population

genetics. As such, this article opens up a research path in which the neu-

tral and non-neutral versions of more sophisticated models can be compared

through active information.

In the pre-limiting model, as it was made explicit in Remark 2, when com-

paring the Wright-Fisher model with mutation to the neutral Wright-Fisher

model, the active information of fixation is N times the active information

of the success event of the binomial distributions under consideration.

When we go to the limit, as we saw at the end of Section 2, active in-

formation makes explicit fitness differences that cannot be observed in the

laboratory but that still are significant asymptotically. In fact, even though

the probability of fixation of a beneficial allele in a selection-only model is

independent of the population size, active information shows that the infor-

mation that the selection coefficient introduces plays a very important role

as the population size increases. When a deleterious allele is introduced, the

population size makes the active information negative; and when a beneficial
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allele is introduced, it makes the active information positive.

In summary, we see at least two things: First, selection does not act in

the model as an innocuous force. Selection adds information. Second, since

selection is an information source (and mutations when they are present), it is

not a free lunch, and the information it adds is compounded by the population

size. Our research stands alongside the work of Basener and Sanford [1] who

through alternative analysis have demonstrated the ineffectiveness of the

Wright-Fisher model to create information ex-nihilo.

When active information was originally introduced, its purpose was to

measure the amount of information added by a programmer in an alternative

search, referenced to a blind one. In this kind of problem the (search) space

is always compact. However, non-compact spaces require a generalization of

the baseline distribution beyond uniformity in order to be able to account for

equilibrium in these spaces, particularly when the space is at least countably

infinite. This generalization was developed in [6]. As such, to our knowledge,

this application to population genetics is the first to use generalized active

information.
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