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Abstract

In this article we present the structure of the F tests, the variance components and the approxi-
mate degrees of freedom for each of the eight possible mixed models of the strip-split plot design.
We present an example to illustrate the model and compare it to more traditional settings like
a three-way factorial design and a split-split plot model.
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1 Introduction and Method

There are many opportunities in which a researcher needs to know the behavior of a factor in
relation to one and/or two additional factors. When this happens a factorial design is usually
considered, which is due, in part, to the great development reached by this type of model.

Instead, we study here the strip-split-plot design; i.e., an extension of strip-block designs such
that each plot on the intersection is subdivided into subplots to insert a third factor. This new factor
will be more precise on its measurement due to its high number of observations and interactions;
which is the more important feature of the design.

We do not claim originality on the invention of this model. On the contrary, Gomez and Gomez
(1984) described it, as well as Zimmermann (2004, 2014) did. They also described the F tests when
the effects are fixed. Nonetheless, after an intensive search, we could not find on the literature those
same F tests for the strip-split plot design with mixed effects. For instance, Montgomery (2012)
calls strip-split-plots what is known in most of the remaining literature as strip blocks, therefore his
analysis is developed for this latter case, and again only for the fixed effects model. The omission
is understandable taking into account that his work is mainly focused on industrial applications;
not agriculture, where this model could be more useful.

Other authors, like Cochran and Cox (1992) talk about strip-split plots and strip blocks, but
do not talk about strip-split plot designs. Kuehl (1999) opens the possibility to a third factor for
experiments with sub-subplots, but does not go beyond this point. McIntosh (1983) introduces
analyses for combined experiments, but does not touch strip-split plot designs. Finally, Saavedra
(2000) works with combined experiments in split plots and even works with sub-subplots, but she
does not touch either strip-split plot designs.

Thus, there is a gap on the literature and no current monographs, books or papers, to our
knowledge, seem to cover it. We intend to fill that gap here presenting for the first time the
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development of such F tests for all possible mixed models. On a sequel, we will consider the
contrasts for this design and construct their variances and variance estimators, again for every case
of the mixed effects model.

To determine the variance components and the ANOVA, we use a method explained by Searle
et. al. (1992). The design is completely randomized so that it makes sense to implement F tests.
The mathematical model is given by

yhijk = m+Rh +Ai + eAhi
+Bj + eBhj

+ABij + eABhij
+ Ck +ACik +BCjk +ABCijk + et,

where m is the general mean, Rh is the h-th random block effect (h = 1, . . . , r), Ai is the i-th
horizontal strip effect (i = 1, . . . , a), Bj is the j-th vertical strip effect (j = 1, . . . , b) and Ck is the
k-th effect of the subplot of A and B (k = 1, . . . , c). So yhijk represents the observation of the i-th
level of A, the j-th level of B, the k-th level of C on the block h. The errors eAhi

, eBhj
, eABhij

and
ethijk are normally distributed with mean zero and variance σ2eA , σ2eB , σ2eAB

and σ2et , respectively.
Since the blocks are random, we will assume R ∼ N(0, σ2R).

The analysis is done according to the scheme on Table 1, where df stands for degrees of freedom
and SS stands for the sum of squares of the respective variation source. It is worth mentioning
here that Dı́az (2004) presents the sums of squares and the covariance matrices for all the mixed
models as Kronecker products, but those are omitted here to save space.

Table 1: Sums of squares and Degrees of freedom
Source df SS
R r − 1 abc

∑r
h=1(yh... − y....)2

A a− 1 bcr
∑a

i=1(y.i.. − y....)2

eA (r − 1)(a− 1) bc
∑a

i=1

∑r
h=1(yhi.. − yh... − y.i.. + y....)

2

B b− 1 acr
∑b

j=1(y..j. − y....)2

eB (r − 1)(b− 1) ac
∑b

j=1

∑r
h=1(yh.j. − yh... − y..j. + y....)

2

AB (a− 1)(b− 1) cr
∑a

i=1

∑b
j=1(y.ij. − y.i.. − y..j. + y....)

2

eAB (a− 1)(b− 1)(r − 1)
c
∑a

i=1

∑b
j=1

∑r
h=1(yhij.−yhi..−yh.j.−y.ij. +

yh... + y.i.. + y..j. − y....)2
C c− 1 abr

∑c
k=1(y...k − y....)2

AC (a− 1)(c− 1) br
∑a

i=1

∑c
k=1(y.i.k − y.i.. − y...k + y....)

2

BC (b− 1)(c− 1) ar
∑b

j=1

∑c
k=1(y..jk − y..j. − y...k + y....)

2

ABC (a− 1)(b− 1)(c− 1)
r
∑a

i=1

∑b
j=1

∑c
k=1(y.ijk−y.i.k−y..jk +y...k−

y.ij. + y.i.. + y..j. − y....)2

et ab(c− 1)(r − 1)

∑r
h=1

∑a
i=1

∑b
j=1

∑c
k=1(yhijk− y.ijk− yhij. +

y.ij.)
2

2 Expected mean squares

To illustrate how to obtain the expected mean squares E(MS) we will show the process for the
random blocks R (For the remaining cases, since the procedure is similar, we will only present
the final value without the respective development): First, take SSR in Table 1 and calculate its
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expected value:

E(SSR) = abc
r∑

h=1

E(Rh −R. + eAh.
− eA.. + eBh.

− eB.. + eABh..
− eAB... + eth... − et....)

2,

since the product of errors and factors is always zero under expectation, E(SSR) equals

abc

r∑
h=1

E(Rh −R.)2 + abc

r∑
h=1

E(eAh.
− eA.. + eBh.

− eB.. + eABh..
− eAB... + eth... − et....)

2,

and since the errors are independent between themselves,

E(SSR) = abc

r∑
h=1

E(Rh −R.)2 + abc

r∑
h=1

E(eAh.
− eA..)

2 + abc

r∑
h=1

E(eBh.
− eB..)

2

+ abc

r∑
h=1

E(eABh..
− eAB...)

2 + abc

r∑
h=1

E(eth... − et....)
2.

Therefore, taking into account that σ2e = E(e2) − E2(e), and that E(e) = 0 for every error in the
model,

E(SSR) = abc
r∑

h=1

E(Rh −R.)2 + abc
(r − 1)σ2eA

a

+ abc
(r − 1)σ2eB

b
+ abc

(r − 1)σ2eAB

ab
+ abc

(r − 1)σ2et
abc

.

Then, taking E(SSR) and dividing it by its df , we obtain the expected mean square for fixed blocks:

E(MSR) =
abc

r − 1

r∑
h=1

E(Rh −R.)2 + bcσ2eA + acσ2eB + cσ2eAB
+ σ2et . (1)

Now, for the more interesting case of random blocks, we get:

E(MSR) = abcσ2R + bcσ2eA + acσ2eB + cσ2eAB + σ2et .

Note that E(MSR) will remain unchanged regardless the model we are considering. This is also
true for the expectation of the mean square of each error involved. So we mention these here and
will omit them in the particular description of the E(MS)’s for each model:

E(MSeA) = bcσ2eA + cσ2eAB
+ σ2et ,

E(MSeB ) = acσ2eB + cσ2eAB
+ σ2et ,

E(MSeAB ) = cσ2eAB
+ σ2et ,

E(MSet) = σ2et .

Finally, note also that every interaction involving a random effect will be random. So in the
following subsections, to avoid confusion, we present explicitly all the E(MS)’s for every model.
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2.1 Expected mean squares for the fixed effects model

When the effects are fixed (constant), by definition it is sufficient to suppress the expectation
operator of the mean squares considered. Thus we get:

E(MSA) =
bcr

a− 1

a∑
i=1

(Ai −A. +ABi. −AB.. +ACi. −AC .. +ABCi.. −ABC ...)2

+ bcσ2eA + cσ2eAB
+ σ2et ,

E(MSB) =
acr

b− 1

b∑
j=1

(Bj −B. +AB.j −AB.. +BCj. −BC .. +ABC .j. −ABC ...)2

+ acσ2eB + cσ2eAB
+ σ2et ,

E(MSAB) =
cr

(a− 1)(b− 1)

a∑
i=1

b∑
j=1

(ABij −AB.j −ABi. +AB..

+ABCij. −ABC .j. −ABCi.. +ABC ...)
2 + cσ2eAB

+ σ2et ,

E(MSC) =
abr

c− 1

c∑
k=1

(Ck − C . +AC .k −AC .. +BC .k −BC .. +ABC ..k −ABC ...)2 + σ2et ,

E(MSAC) =
br

(a− 1)(c− 1)

a∑
i=1

c∑
k=1

(ACik −AC .k −ACi. +AC ..

+ABCi.k −ABC ..k −ABCi.. +ABC ...)
2 + σ2et ,

E(MSBC) =
ar

(b− 1)(c− 1)

b∑
j=1

c∑
k=1

(BCjk −BC .k −BCj. +BC ..

+ABC .jk −ABC ..k −ABC .j. +ABC ...)
2 + σ2et ,

E(MSABC) =
r

(a− 1)(b− 1)(c− 1)

a∑
i=1

b∑
j=1

c∑
k=1

(ABCijk −ABC .jk

−ABCi.k +ABC ..k −ABCij. +ABC .j. +ABCi.. −ABC ...)2 + σ2et .

2.2 Expected mean squares for the random effects model

When a factor, say A, has random effects, we will assume that the effects of A have distribution
N(0, σ2A). Then for the random effects model, the effects ofA, B and C will be random, independent,
and normally distributed with mean 0 and variance σ2A, σ2B and σ2C , respectively. The interactions
AB, AC, BC and ABC will have normal distribution with mean 0 and variance σ2AB, σ2AC , σ2BC
and σ2ABC , respectively. We also assume that the effects are independent between them. So we get:
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E(MSA) = bcrσ2A + bcσ2eA + crσ2AB + cσ2eAB
,+brσ2AC + rσ2ABC + σ2et ,

E(MSB) = acrσ2B + acσ2eB + crσ2AB + cσ2eAB
,+arσ2BC + rσ2ABC + σ2et ,

E(MSAB) = crσ2AB + cσ2eAB
+ rσ2ABC + σ2et ,

E(MSC) = abrσ2C + brσ2AC + arσ2BC + rσ2ABC + σ2et ,

E(MSAC) = brσ2AC + rσ2ABC + σ2et ,

E(MSBC) = arσ2BC + rσ2ABC + σ2et ,

E(MSABC) = rσ2ABC + σ2et .

2.3 Expected mean squares when only A is fixed

In this case, B and C will be random with variances σ2B and σ2C , respectively. Also, AB, AC, BC
and ABC will be random with variances σ2AB, σ2AC , σ2BC and σ2ABC , respectively. So we obtain:

E(MSA) =
bcr

a− 1

a∑
i=1

(Ai −A.)2 + bcσ2eA + crσ2AB + cσ2eAB
+ brσ2AC + rσ2ABC + σ2et ,

E(MSB) = acrσ2B + acσ2eB + crσ2AB + cσ2eAB
+ arσ2BC + rσ2ABC + σ2et ,

E(MSAB) = crσ2AB + cσ2eAB
+ rσ2ABC + σ2et ,

E(MSC) = abrσ2C + brσ2AC + arσ2BC + rσ2ABC + σ2et ,

E(MSAC) = brσ2AC + rσ2ABC + σ2et ,

E(MSBC) = arσ2BC + rσ2ABC + σ2et ,

E(MSABC) = rσ2ABC + σ2et .

2.4 Expected mean squares when only B is fixed

Here we have that A and C will be random with variances σ2A and σ2C , respectively. Also, AB,
AC, BC and ABC will be random with variances σ2AB, σ2AC , σ2BC and σ2ABC , respectively. So we
obtain:

E(MSA) = bcrσ2A + bcσ2eA + crσ2AB + cσ2eAB
+ brσ2AC + rσ2ABC + σ2et ,

E(MSB) =
acr

b− 1

b∑
j=1

(Bj −B.)
2 + acσ2eB + crσ2AB + cσ2eAB

+ arσ2BC + rσ2ABC + σ2et ,

E(MSAB) = crσ2AB + cσ2eAB
+ rσ2ABC + σ2et ,

E(MSC) = abrσ2C + brσ2AC + arσ2BC + rσ2ABC + σ2et ,

E(MSAC) = brσ2AC + rσ2ABC + σ2et ,

E(MSBC) = arσ2BC + rσ2ABC + σ2et ,

E(MSABC) = rσ2ABC + σ2et .
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2.5 Expected mean squares when only C is fixed

In this case, A and B are random with variances σ2A and σ2B, respectively. Also, AB, AC, BC and
ABC will be random with variances σ2AB, σ2AC , σ2BC and σ2ABC , respectively. So we obtain:

E(MSA) = bcrσ2A + bcσ2eA + crσ2AB + cσ2eAB
+ brσ2AC + rσ2ABC + σ2et ,

E(MSB) = acrσ2B + acσ2eB + crσ2AB + cσ2eAB
+ arσ2BC + rσ2ABC + σ2et ,

E(MSAB) = crσ2AB + cσ2eAB
+ rσ2ABC + σ2et ,

E(MSC) =
abr

c− 1

c∑
k=1

(Ck − C .)2 + brσ2AC + arσ2BC + rσ2ABC + σ2et ,

E(MSAC) = brσ2AC + rσ2ABC + σ2et ,

E(MSBC) = arσ2BC + rσ2ABC + σ2et ,

E(MSABC) = rσ2ABC + σ2et .

2.6 Expected mean squares when only A is random

In this case, A, AB, AC and ABC are random with variance σ2A, σ2AB, σ2AC and σ2ABC , respectively.
Thus, we get:

E(MSA) = bcrσ2A + bcσ2eA + crσ2AB + cσ2eAB
+ brσ2AC + rσ2ABC + σ2et ,

E(MSB) =
acr

b− 1

b∑
j=1

(Bj −B. +BCj. −BC ..)2 + acσ2eB + crσ2AB + cσ2eAB
+ rσ2ABC + σ2et ,

E(MSAB) = crσ2AB + cσ2eAB
+ rσ2ABC + σ2et ,

E(MSC) =
abr

c− 1

c∑
k=1

(Ck − C . +BC .k −BC ..)2 + brσ2AC + rσ2ABC + σ2et ,

E(MSAC) = brσ2AC + rσ2ABC + σ2et ,

E(MSBC) =
ar

(b− 1)(c− 1)

b∑
j=1

c∑
k=1

(BCjk −BC .k −BCj. +BC ..)
2 + rσ2ABC + σ2et ,

E(MSABC) = rσ2ABC + σ2et .

2.7 Expected mean squares when only B is random

In this case, B, AB, BC and ABC are random with variance σ2B, σ2AB, σ2BC and σ2ABC , respectively.
Thus, we get:
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E(MSA) =
bcr

a− 1

a∑
i=1

(Ai −A. +ACi. −AC ..)2 + bcσ2eA + crσ2AB + cσ2eAB
+ rσ2ABC + σ2et ,

E(MSB) = acrσ2B + acσ2eB + crσ2AB + cσ2eAB
+ arσ2BC + rσ2ABC + σ2et ,

E(MSAB) = crσ2AB + cσ2eAB
+ rσ2ABC + σ2et ,

E(MSC) =
abr

c− 1

c∑
k=1

(Ck − C . +AC .k −AC ..)2 + arσ2BC + rσ2ABC + σ2et ,

E(MSAC) =
br

(a− 1)(c− 1)

a∑
i=1

c∑
k=1

(ACik −AC .k −ACi. +AC ..)
2 + rσ2ABC + σ2et ,

E(MSBC) = arσ2BC + rσ2ABC + σ2et ,

E(MSABC) = rσ2ABC + σ2et .

2.8 Expected mean squares when only C is random

Here C, AC, BC and ABC are random with variance σ2C , σ2AC , σ2BC and σ2ABC , respectively. Thus,
we get:

E(MSA) =
bcr

a− 1

a∑
i=1

(Ai −A. +ABi. −AB..)
2 + bcσ2eA + cσ2eAB

+ brσ2AC + rσ2ABC + σ2et ,

E(MSB) =
acr

b− 1

b∑
j=1

(Bj −B. +AB.j −AB..)
2 + acσ2eB + cσ2eAB

+ arσ2BC + rσ2ABC + σ2et ,

E(MSAB) =
cr

(a− 1)(b− 1)

a∑
i=1

b∑
j=1

(ABij −AB.j −ABi. +AB..)
2 + rσ2ABC + cσ2eAB

+ σ2et ,

E(MSC) = abrσ2C + brσ2AC + arσ2BC + rσ2ABC + σ2et ,

E(MSAC) = brσ2AC + rσ2ABC + σ2et ,

E(MSBC) = arσ2BC + rσ2ABC + σ2et ,

E(MSABC) = rσ2ABC + σ2et .

3 F tests

In this section we present the F tests in tables. When required, we will specify the approximated
df by means of the famous estimator developed by Satterthwaite (1946); for the cases in which the
complex estimation is a function of two variance components we will use the estimator proposed
by Ames and Webster (1991), which is a correction to Satterthwaite for this particular case. Let
us start with the estimator by Satterthwaite:

If θ is variance which is a linear combination of m independent variances, i.e., if θ =
∑m

i=1 aiθi,

with estimator θ̂ =
∑m

i=1 aiMS2
i , we say that θ̂ is a complex estimator of θ. Since for our case the

coefficients ai = 1, for i = 1, . . . ,m, we will omit them on what follows. For the cases in which the
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variance estimator is complex, Satterthwaite (1946) proposed the following estimator for the df :

f̂s =
(
∑m

i=1MSi)
2∑m

i=1MS2
i /ni

, (2)

where ni are the df of the source of variation corresponding to i. This is so because fθ̂
θ can be

approximated to a χ2 with f degrees of freedom.
Ames and Webster (1991) consider this estimator unstable —and they are right— because

of its denominator. Notice that on this denominator each variance estimator is first squared and
then added. Since in the numerator, the terms are first added and the result is squared, f̂s can be
affected. Moreover, if the variance components are underestimated, there is the undesirable risk of
overestimating the degrees of freedom. For these reasons they propose the following estimator:

When the variance θ is a function of two mean squares, θ1 and θ2, call φ1 = 1 and φ2 = θ2/θ1,
and consider the class of estimators given by φ̂2 = rMS2/MS1, where r is a constant, then we can
approximate the df by

f̂aw(r) =

(∑2
i=1 φ̂i

)2
∑2

i=1 φ
2
i /ni

. (3)

Note that f̂aw(1) = f̂s and that min(n1, n2) ≤ f̂aw(r) ≤ n1 + n2. Thus, we can vary r in order to
get better properties. For instance,

r∗ =
n2

n2 − 2

(
2(n1 + n2 − 2)

n1(n2 − 4)
+ 1

)
minimizes the mean square of the error of 1/φ̂2. Also r∗ > 1 and f̂aw(r∗) < fs. In this paper, every
time we calculate the Ames-Webster estimator (3), we will also calculate its respective value r∗.
Using the Ames-Webster approach we have two possible estimations for every value of r. Then, if
both of them are less than f̂s, it is advisable to use the larger one, since the smaller one usually
has a negative bias.

With these tools at hand, we proceed to present the F test for every model. The first column
in each of the tables will be the source of variation, the second one will tell us if the effects are
random or fixed, the third one will be the corresponding F test and the last one will be the null
hypothesis under consideration. When the effects are random, the null hypothesis will be that the
corresponding variance of the source has 0 variance; when the effects are fixed, the null hypothesis
will be that all effects are equal (to 0).

3.1 F tests when all effects are fixed

To construct the F tests in Table 2, we use the expected mean squares found in Subsection 2.1.
Note that R will have the same structure for the F test, regardless of it being constant or random
(although, of course, the hypothesis will change).

Using the Satterthwaite estimator in (2), we approximate the df for R as:

v1 =
(MSR +MSeAB )2

MS2
R

r−1 +
MS2

eAB
(r−1)(a−1)(b−1)

,

v2 =
(MSeA +MSeB )2

MS2
eA

(r−1)(a−1) +
MS2

eB
(r−1)(b−1)

,
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Table 2: F tests for the fixed effects model
Source Effect F H0

R f
MSR+MSeAB

MSeA
+MSeB

σ2
R = 0

A f MSA

MSeA
A1 = A2 = · · · = Aa = 0

eA r
MSeA

MSeAB
σ2
eA = 0

B f MSB

MSeB
B1 = B2 = · · · = Bb = 0

eB r
MSeB

MSeAB
σ2
eB = 0

AB f MSAB

MSeAB
(AB)ij = 0, ∀i, ∀j.

eAB r
MSeAB

MSet
σ2
eAB

= 0

C f MSC

MSet
C1 = C2 = · · · = Cc = 0

AC f MSAC

MSet
(AC)ik = 0, ∀i, ∀k.

BC f MSBC

MSet
(BC)jk = 0, ∀j, ∀k.

ABC f MSABC

MSet
(ABC)ijk = 0, ∀i, ∀j, ∀k.

et r –

where v1 and v2 are the df for the enumerator and the denominator, respectively.
When we adjust using the Ames-Webster estimator (3), we obtain two estimators for each case.

First let us see the df for the numerator: Let MS1 = MSR and MS2 = MSeAB , then

p1 =
(r − 1)(a− 1)(b− 1)

(r − 1)(a− 1)(b− 1)− 2

(
2[(r − 1)(a− 1)(b− 1) + r − 3]

(r − 1)[(r − 1)(a− 1)(b− 1)− 4]
+ 1

)
,

f̂aw(p1) =
(1 + p1MSeAB/MSR)2

1
r−1 +

(p1MSeAB
/MSR)2

(r−1)(a−1)(b−1)

;

on the other hand, when MS1 = MSeAB and MS2 = MSR:

p∗1 =
r − 1

r − 3

(
2[(r − 1)(a− 1)(b− 1) + r − 3]

(r − 1)(a− 1)(b− 1)(r − 5)
+ 1

)
,

f̂aw(p∗1) =
(1 + p∗1MSR/MSeAB )2

1
(r−1)(a−1)(b−1) +

(p∗1MSR/MSeAB
)2

r−1

.

Now, for the denominator, when MS1 = MSeA and MS2 = MSeB we have:

p2 =
(r − 1)(b− 1)

(r − 1)(b− 1)− 2

(
2{(r − 1)[(a− 1) + (b− 1)]− 2}
(r − 1)(a− 1)[(r − 1)(b− 1)− 4]

+ 1

)
,

f̂aw(p2) =
(1 + p2MSeB/MSeA)2

1
(r−1)(a−1) +

(p2MSeB
/M−3)2

(r−1)(b−1)

;

and when MS1 = MSeB and MS2 = MSeA we have:

p∗2 =
(r − 1)(a− 1)

(r − 1)(a− 1)− 2

(
2{(r − 1)[(a− 1) + (b− 1)]− 2}
(r − 1)(b− 1)[(r − 1)(a− 1)− 4]

+ 1

)
,
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f̂aw(p∗2) =
(1 + p∗2MSeA/MSeB )2

1
(r−1)(b−1) +

(p∗2MSeA
/M−5)2

(r−1)(a−1)

.

The estimators for the df of R will always be the same. For this reason they will be omitted on
the tables to come.

3.2 F tests when all effects are random

When all effects are random, we construct the F tests on Table 3 based on the mean squares
developed in Subsection 2.2.

Table 3: F tests for the random effects model
Source Effect F H0

R r
MSR+MSeAB

MSeA
+MSeB

σ2
R = 0

A r
MSA+MSeAB

+MSABC

MSeA
+MSAB+MSAC

σ2
A = 0

eA r
MSeA

MSeAB
σ2
AR = 0

B r
MSB+MSeAB

+MSABC

MSeB
+MSAB+MSBC

σ2
B = 0

eB r
MSeB

MSeAB
σ2
BR = 0

AB r
MSAB+MSet

MSeAB
+MSABC

σ2
AB = 0

eAB r
MSeAB

MSet
σ2
eAB

= 0

C r MSC+MSABC

MSAC+MSBC
σ2
C = 0

AC r MSAC

MSABC
σ2
AC = 0

BC r MSBC

MSABC
σ2
BC = 0

ABC r MSABC

MSet
σ2
ABC = 0

et r –

Since the complex estimators for effects A and B in Table 3 have three variance components,
we will use only (2) with them to find their approximate df . For the effects of A, the df in the
numerator and the denominator v1 and v2, respectively, will be given by:

v1 =
(MSA +MSeAB +MSABC)2

MS2
A

a−1 +
MS2

eAB
(a−1)(b−1)(r−1) +

MS2
ABC

(a−1)(b−1)(c−1)

,

v2 =
(MSeA +MSAB +MSAC)2

MS2
eA

(r−1)(a−1) +
MS2

AB
(a−1)(b−1) +

MS2
AC

(a−1)(c−1)

. (4)

With B, the df of the F test will be for the numerator and denominator respectively:

v1 =
(MSB +MSeAB +MSABC)2

MS2
B

b−1 +
MS2

eAB
(a−1)(b−1)(r−1) +

MS2
ABC

(a−1)(b−1)(c−1)

,

v2 =
(MSeB +MSAB +MSBC)2

MS2
eB

(r−1)(b−1) +
MS2

AB
(a−1)(b−1) +

MS2
BC

(b−1)(c−1)

. (5)
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The df for AB approximated by (2) will be respectively for the numerator and the denominator:

v1 =
(MSAB +MSet)

2

MS2
AB

(a−1)(b−1) +
MS2

et
ab(c−1)(r−1)

,

v2 =
(MSeAB +MSABC)2

MS2
eAB

(a−1)(b−1)(r−1) +
MS2

ABC
(a−1)(b−1)(c−1)

. (6)

Adjusting by means of (3), there are two possible estimators in each case. First, let us see the
degrees of freedom in the numerator. Let MS1 = MSAB and MS2 = MSet , then

p1 =
ab(c− 1)(r − 1)

ab(c− 1)(r − 1)− 2

(
2[(a− 1)(b− 1) + ab(c− 1)(r − 1)− 2]

(a− 1)(b− 1)[ab(c− 1)(r − 1)− 4]
+ 1

)
,

f̂aw(p1) =
(1 + p1MSet/MSAB)2

1
(a−1)(b−1) +

(p1MSet/MSAB)2

ab(c−1)(r−1)

; (7)

on the other hand, when MS1 = MSet and MS2 = MSAB:

p∗1 =
(a− 1)(b− 1)

(a− 1)(b− 1)− 2

(
2[(a− 1)(b− 1) + ab(c− 1)(r − 1)− 2]

ab(c− 1)(r − 1)[(a− 1)(b− 1)− 4]
+ 1

)
,

f̂aw(p∗1) =
(1 + p∗1MSAB/MSet)

2

1
ab(c−1)(r−1) +

(p∗1MSAB/MSet )
2

(a−1)(b−1)

. (8)

And for the denominator, when MS1 = MSeAB and MS2 = MSABC we have:

p2 =
(a− 1)(b− 1)(c− 1)

(a− 1)(b− 1)(c− 1)− 2

(
2[(a− 1)(b− 1)(c+ r − 2)− 2]

(a− 1)(b− 1)(r − 1)[(a− 1)(b− 1)(c− 1)− 4]
+ 1

)
,

f̂aw(p2) =
(1 + p2MSABC/MSeAB )2

1
(a−1)(b−1)(r−1) +

(p2MSABC/MSeAB
)2

(a−1)(b−1)(c−1)

; (9)

when MS1 = MSABC and MS2 = MSeAB we get:

p∗2 =
(a− 1)(b− 1)(r − 1)

(a− 1)(b− 1)(r − 1)− 2

(
2[(a− 1)(b− 1)(c+ r − 2)− 2]

(a− 1)(b− 1)(c− 1)[(a− 1)(b− 1)(r − 1)− 4]
+ 1

)
,

f̂aw(p∗2) =
(1 + p∗2MSeAB/MSABC)2

1
(a−1)(b−1)(c−1) +

(p∗2MSeAB
/MSABC)2

(a−1)(b−1)(r−1)

. (10)

With C, using f̂s, the df for the numerator and denominator will be respectively:

v1 =
(MSC +MSABC)2

MS2
C

c−1 +
MS2

ABC
(a−1)(b−1)(c−1)

,

v2 =
(MSAC +MSBC)2

MS2
AC

(a−1)(c−1) +
MS2

ABC
(a−1)(b−1)(c−1)

. (11)
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For f̂aw these were the estimators for the df of the numerator when MS1 = MSC and MS2 =
MSABC :

p1 =
(a− 1)(b− 1)(c− 1)

(a− 1)(b− 1)(c− 1)− 2

(
2[(a− 1)(b− 1)(c− 1) + c− 3]

(c− 1)[(a− 1)(b− 1)(c− 1)− 4]
+ 1

)
,

f̂(p1) =
(1 + p1MSABC/MSC)2

1
c−1 + (p1MSABC/MSC)2

(a−1)(b−1)(c−1)

; (12)

still for the numerator, but exchanging the order of MS1 and MS2, we obtain:

p∗1 =
c− 1

c− 3

(
2[(a− 1)(b− 1)(c− 1) + c− 3]

(a− 1)(b− 1)(c− 1)(c− 5)
+ 1

)
,

f̂(p∗1) =
(1 + p∗1MSC/MSABC)2

1
(a−1)(b−1)(c−1) +

(p∗1MSC/MSABC)2

c−1

. (13)

For the denominator, taking MS1 = MSAC and MS2 = MSBC , we get the following estimations:

p2 =
(b− 1)(c− 1)

(b− 1)(c− 1)− 2

(
2{(c− 1)[(a− 1) + (b− 1)]− 2}
(a− 1)(c− 1)[(b− 1)(c− 1)− 4]

+ 1

)

f̂(p2) =
(1 + p2MSBC/MSAC)2

1
(a−1)(c−1) + (p2MSBC/MSAC)2

(b−1)(c−1)

; (14)

once again for the denominator, but exchanging to MS1 = MSBC and MS2 = MSAC , we get:

p∗2 =
(a− 1)(c− 1)

(a− 1)(c− 1)− 2

(
2{(c− 1)[(a− 1) + (b− 1)]− 2}
(b− 1)(c− 1)[(a− 1)(c− 1)− 4]

+ 1

)
,

f̂(p∗2) =
(1 + p∗2MSAC/MSBC)2

1
(b−1)(c−1) +

(p∗2MSAC/MSBC)2

(a−1)(c−1)

. (15)

3.3 F tests when only one factor has fixed effects

With respect to Table 3, the only difference for the three cases considered here (only A has fixed
effects, only B has fixed effects, and only C has fixed effects) will occur in the row corresponding
to the fixed effect: first, obviously, its effect will be f instead of r; second, its null hypothesis will
be about the equality of all treatments inside that factor. So when A is the only factor of fixed
effects, its effect is f and its null hypothesis is A1 = · · · = Aa = 0, all other fields remaining equal
to Table 3; when B is the only factor with fixed effects, its effect is f and its null hypothesis is
B1 = · · · = Bb = 0, all other fields remaining equal to Table 3; and when the only fixed effects are
those corresponding to C, its value at effect is f and the null hypothesis will be C1 = · · · = Cc = 0,
all other fields remaining equal to Table 3. This can be easily verified with the information in
Subsections 2.3, 2.4 and 2.5

Since, in particular, the structure of the complex variance estimators is identical to the structure
of the model with random effects, the approximate df for each of these three cases are exactly the
same to those found in Subsection 3.2.
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Table 4: F tests when only A is random
Fuente Efecto F H0

R r
MSR+MSeAB

MSeA
+MSeB

σ2
R = 0

A r
MSA+MSeAB

+MSABC

MSeA
+MSAB+MSAC

σ2
A = 0

eA r
MSeA

MSeAB
σ2
eA = 0

B f
MSB+MSeAB

MSeB
+MSAB

B1 = B2 = · · · = Bb = 0

eB r
MSeB

MSeAB
σ2
eB = 0

AB r
MSAB+MSet

MSeAB
+MSABC

σ2
AB = 0

eAB r
MSeAB

MSet
σ2
eAB

= 0

C f MSC

MSAC
C1 = C2 = · · · = Cc = 0

AC r MSAC

MSABC
σ2
AC = 0

BC f MSBC

MSABC
(BC)jk = 0, ∀j, k.

ABC r MSABC

MSet
σ2
ABC = 0

et r –

3.4 F tests when only A has random effects

When the effects of A are random, we obtain Table 4 based on the E(MS)’s found in Subsection
2.6.

The estimators for the df of A are those in (4). The estimators of the df by Satterthwaite for
AB are those in (6); the estimators by Ames-Webster are given in equations (7) and (8) for the
numerator, and (9) and (10) for the denominator. Now we procede to evaluate the df for the F
test of B, first by means of the Satterthwaite estimator in equation (2):

v1 =
(MSB +MSeAB )2

MS2
B

b−1 +
MS2

eAB
(a−1)(b−1)(r−1)

,

v2 =
(MSeB +MSAB)2

MS2
eB

(b−1)(r−1) +
MS2

AB
(a−1)(b−1)

. (16)

Still with B, the first Ames-Webster estimator for the df of the numerator of the F , taking MS1 =
MSB and MS2 = MSeAB will be:

p1 =
(a− 1)(b− 1)(r − 1)

(a− 1)(b− 1)(r − 1)− 2

(
2{(b− 1)[(a− 1)(r − 1) + 1]− 2}
(b− 1)[(a− 1)(b− 1)(r − 1)− 4]

+ 1

)
,

f̂(p1) =
(1 + p1MSeAB/MSB)2

1
b−1 +

(p1MSeAB
/MSB)2

(a−1)(b−1)(r−1)

;

and exchanging the order to MS1 = MSeAB and MS2 = MSB, we obtain:

p∗1 =
b− 1

b− 3

(
2{(b− 1)[(a− 1)(r − 1) + 1]− 2}

(a− 1)(b− 1)(r − 1)(b− 5)
+ 1

)
,

f̂(p∗1) =
(1 + p∗1MSB/MSeAB )2

1
(a−1)(b−1)(r−1) +

(p∗1MSB/MSeAB
)2

b−1

.
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For the denominator of the the F test of B, taking MS1 = MSeB y MS2 = MSAB:

p2 =
(a− 1)(b− 1)

(a− 1)(b− 1)− 2

(
2[(b− 1)(a+ r − 2)− 2]

(b− 1)(r − 1)[(a− 1)(b− 1)− 4]
+ 1

)
,

f̂(p2) =
(1 + p2MSAB/MSeB )2

1
(b−1)(r−1) +

(p2MSAB/MSeB
)2

(a−1)(b−1)

;

and exchanging the order of MS1 and MS2:

p∗2 =
(b− 1)(r − 1)

(b− 1)(r − 1)− 2

(
2[(b− 1)(a+ r − 2)− 2]

(a− 1)(b− 1)[(b− 1)(r − 1)− 4]
+ 1

)
,

f̂(p∗2) =
(1 + p∗2MSeB/MSAB)2

1
(a−1)(b−1) +

(p∗2MSeB
/MSAB)2

(b−1)(r−1)

.

3.5 F tests when only B has random effects

When only A and C have fixed effects, based on Subsection (2.7), we get Table 5.

Table 5: F tests when only B is random
Source Effect F H0

R r
MSR+MSeAB

MSeA
+MSeB

σ2
R = 0

A f
MSA+MSeAB

MSeA
+MSAB

A1 = A2 = · · · = Aa = 0

eA r
MSeA

MSeAB
σ2
eA = 0

B r
MSB+MSeAB

+MSABC

MSeB
+MSAB+MSBC

σ2
B = 0

eB r
MSeB

MSeAB
σ2
eB = 0

AB r
MSAB+MSet

MSeAB
+MSABC

σ2
AB = 0

eAB r
MSeAB

MSet
σ2
eAB

= 0

C f MSC

MSBC
C1 = C2 = · · · = Cc = 0

AC f MSAC

MSABC
(AC)ik = 0, ∀i, k.

BC r MSBC

MSABC
σ2
BC = 0

ABC r MSABC

MSet
σ2
ABC = 0

et r –

The approximated df for the F test of B were found using the Satterthwaite estimator (5).
The approximation of the df for AB using Satterthwaite is given by (6); using Ames-Webster, the
estimator for the df of AB are given in equations (7) and (8) for the numerator, and (9) and (10)
for the denominator. Now we procede to evaluate the df for the F test of A, first by means of the
Satterthwaite estimator in equation (2):

v1 =
(MSA +MSeAB )2

MS2
A

a−1 +
MS2

eAB
(a−1)(b−1)(r−1)

,

v2 =
(MSeA +MSAB)2

MS2
eA

(r−1)(a−1) +
MS2

AB
(a−1)(b−1)

.
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The Ames-Webster estimator for the numerator is the following when MS1 = MSA and MS2 =
MSeAB :

p1 =
(a− 1)(b− 1)(r − 1)

(a− 1)(b− 1)(r − 1)− 2

(
2{(a− 1)[(b− 1)(r − 1) + 1]− 2}
(a− 1)[(a− 1)(b− 1)(r − 1)− 4]

+ 1

)
,

f̂(p1) =
(1 + p1MSeAB/MSA)2

1
a−1 +

(p1MSeAB
/MSA)2

(a−1)(b−1)(r−1)

;

still with the numerator but taking MS1 = MSeAB and MS2 = MSA, we get:

p∗1 =
a− 1

a− 3

(
2{(a− 1)[(b− 1)(r − 1) + 1]− 2}

(a− 1)(b− 1)(r − 1)(a− 5)
+ 1

)
,

f̂(p∗1) =
(1 + p∗1MSA/MSeAB )2

1
(a−1)(b−1)(r−1) +

(p∗1MSA/MSeAB
)2

a−1

.

For the denominator, doing MS1 = MSeA and MS2 = MSAB, we get:

p2 =
(a− 1)(b− 1)

(a− 1)(b− 1)− 2

(
2[(a− 1)(b+ r − 2)− 2]

(a− 1)(r − 1)[(a− 1)(b− 1)− 4]
+ 1

)
,

f̂(p2) =
(1 + p2MSAB/MSeA)2

1
(a−1)(r−1) +

(p2MSAB/MSeA
)2

(a−1)(b−1)

;

finally, exchanging the order of MS1 and MS2, we obtain:

p∗2 =
(a− 1)(r − 1)

(a− 1)(r − 1)− 2

(
2[(a− 1)(b+ r − 2)− 2]

(a− 1)(b− 1)[(a− 1)(r − 1)− 4]
+ 1

)
,

f̂(p∗2) =
(1 + p∗2MSeA/MSAB)2

1
(a−1)(b−1) +

(p∗2MSeA
/MSAB)2

(a−1)(r−1)

.

3.6 F tests when only C has random effects

Table 6 was constructed using the E(MS)’s in Subsection 2.8. Note that the approximate degrees
of freedom for AB were described in equations (6) by means of Satterthwaite; also for AB, the
approximations of its degrees of freedom using Ames-Webster were given in equations (7) and (8)
for the numerator , and (9) and 10 for the denominator.

For C, its approximate df using Satterthwaite were found in (11). And the Ames-Webster
estimators of the df of C are given by (12) and (13) for the numerator, and by (14) and (15) for
the denominator.

We procede to evaluate the approximate df for the F test of A, first by means of the Satterth-
waite estimator in equation (2):
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Table 6: F tests when only C is random
Source Effect F H0

R r
MSR+MSeAB

MSeA
+MSeB

σ2
R = 0

A f
MSA+MSet

MSeA
+MSAC

A1 = A2 = · · · = Aa = 0

eA r
MSeA

MSeAB
σ2
eA = 0

B f
MSB+MSet

MSeB
+MSBC

B1 = B2 = · · · = Bb = 0

eB r
MSeB

MSeAB
σ2
eB = 0

AB f
MSAB+MSet

MSeAB
+MSABC

(AB)ij = 0, ∀i, j.

eAB r
MSeAB

MSet
σ2
eAB

= 0

C r MSC+MSABC

MSAC+MSBC
σ2
C = 0

AC r MSAC

MSABC
σ2
AC = 0

BC r MSBC

MSABC
σ2
BC = 0

ABC r MSABC

MSet
σ2
ABC = 0

et r –

v1 =
(MSA +MSet)

2

MS2
A

a−1 +
MS2

et
ab(c−1)(r−1)

,

v2 =
(MSeA +MSAC)2

MS2
eA

(r−1)(a−1) +
MS2

AC
(a−1)(c−1)

.

The Ames-Webster estimator for the numerator is the following when MS1 = MSA and MS2 =
MSet :

p1 =
ab(c− 1)(r − 1)

ab(c− 1)(r − 1)− 2

(
2[ab(c− 1)(r − 1) + a− 3]

(a− 1)[ab(c− 1)(r − 1)− 4]
+ 1

)
,

f̂(p1) =
(1 + p1MSet/MSA)2

1
a−1 +

(p1MSet/MSA)2

ab(c−1)(r−1)

;

still with the numerator but taking MS1 = MSet and MS2 = MSA, we get:

p∗1 =
a− 1

a− 3

(
2[ab(c− 1)(r − 1) + a− 3]

ab(c− 1)(r − 1)(a− 5)
+ 1

)
,

f̂(p∗1) =
(1 + p∗1MSA/MSet)

2

1
ab(c−1)(r−1) +

(p∗1MSA/MSet )
2

a−1

.

For the denominator, doing MS1 = MSeA and MS2 = MSAC , we get:

p2 =
(a− 1)(c− 1)

(a− 1)(c− 1)− 2

(
2[(a− 1)(r + c− 2)− 2]

(a− 1)(r − 1)[(a− 1)(c− 1)− 4]
+ 1

)
,
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f̂(p2) =
(1 + p2MSAC/MSeA)2

1
(a−1)(r−1) +

(p2MSAC/MSeA
)2

(a−1)(c−1)

;

finally, exchanging the order of MS1 and MS2, we obtain:

p∗2 =
(a− 1)(r − 1)

(a− 1)(r − 1)− 2

(
2[(a− 1)(r + c− 2)− 2]

(a− 1)(c− 1)[(a− 1)(r − 1)− 4]
+ 1

)
,

f̂(p∗2) =
(1 + p∗2MSeA/MSAC)2

1
(a−1)(c−1) +

(p∗2MSeA
/MSAC)2

(a−1)(r−1)

.

Now, we evaluate the approximate df for the F test of B, first by means of the Satterthwaite
estimator in equation (2):

v1 =
(MSB +MSet)

2

MS2
B

b−1 +
MS2

et
ab(c−1)(r−1)

,

v2 =
(MSeB +MSBC)2

MS2
eB

(r−1)(b−1) +
MS2

BC
(b−1)(c−1)

.

The Ames-Webster estimator for the numerator is the following when MS1 = MSB and MS2 =
MSet :

p1 =
ab(c− 1)(r − 1)

ab(c− 1)(r − 1)− 2

(
2[ab(c− 1)(r − 1) + b− 3]

(b− 1)[ab(c− 1)(r − 1)− 4]
+ 1

)
,

f̂(p1) =
(1 + p1MSet/MSB)2

1
b−1 +

(p1MSet/MSB)2

ab(c−1)(r−1)

;

still with the numerator but taking MS1 = MSet and MS2 = MSB, we get:

p∗1 =
b− 1

b− 3

(
2[ab(c− 1)(r − 1) + b− 3]

ab(c− 1)(r − 1)(b− 5)
+ 1

)
,

f̂(p∗1) =
(1 + p∗1MSB/MSet)

2

1
ab(c−1)(r−1) +

(p∗1MSB/MSet )
2

b−1

.

For the denominator, doing MS1 = MSeB and MS2 = MSBC , we get:

p2 =
(b− 1)(c− 1)

(b− 1)(c− 1)− 2

(
2[(b− 1)(r + c− 2)− 2]

(b− 1)(r − 1)[(b− 1)(c− 1)− 4]
+ 1

)
,

f̂(p2) =
(1 + p2MSBC/MSeB )2

1
(b−1)(r−1) +

(p2MSBC/MSeB
)2

(b−1)(c−1)

;

finally, exchanging the order of MS1 and MS2, we obtain:

p∗2 =
(b− 1)(r − 1)

(b− 1)(r − 1)− 2

(
2[(b− 1)(r + c− 2)− 2]

(b− 1)(c− 1)[(b− 1)(r − 1)− 4]
+ 1

)
,

f̂(p∗2) =
(1 + p∗2MSeB/MSBC)2

1
(b−1)(c−1) +

(p∗2MSeB
/MSBC)2

(b−1)(r−1)

.
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4 Application

In Zimmermann (2004), a real example was considered when all the effects are fixed. The data in
Tables 7 and 8 show the weight of 100 beans obtained by Luis Fernando Stone and Regis Vilela
Bagatini on an experiment in 1998. It is a complete block design with two replicates on which each
horizontal strip corresponds to the water layer irrigated, the vertical strips are soil tillage systems
and the subplots are Nitrogen doses. The experiment was done at the Capivara farm in Embrapa
Rice and Bean.

Table 7: Block 1
Water Soil 1 Soil 2 Soil 3

Nit 1 Nit 2 Nit 3 Nit 1 Nit 2 Nit 3 Nit 1 Nit 2 Nit 3
Water 1 26.33 27.85 27.13 25.10 27.67 24.93 25.00 28.03 29.65
Water 2 24.04 25.22 28.32 25.19 27.77 27.28 25.89 24.27 25.83
Water 3 25.85 25.70 26.97 25.63 27.11 25.62 26.16 24.86 25.51
Water 4 23.20 20.32 23.94 29.28 26.03 28.60 26.23 25.49 24.65

Table 8: Block 2
Water Soil 1 Soil 2 Soil 3

Nit 1 Nit 2 Nit 3 Nit 1 Nit 2 Nit 3 Nit 1 Nit 2 Nit 3
Water 1 25.87 28.64 29.31 27.80 27.25 25.56 28.53 26.38 32.45
Water 2 27.16 26.49 25.99 24.63 26.91 28.47 26.68 27.64 24.80
Water 3 27.11 24.44 28.06 25.77 27.46 26.20 26.83 27.55 27.19
Water 4 23.00 23.43 23.42 28.71 26.45 26.25 26.64 26.82 26.88

The water layers (the vertical strips, A) are averaged irrigation levels as follows: 366.1 mm for
the first horizontal strip, 335.1 mm for the second one, 315.7 mm for the third one, and 293.7 mm
for the last one. There are three ways to prepare the soil (the vertical strips B): heavy harrowing
for the first vertical strip, moldboard plowing for the second one, and notillage on the last one.
The Nitrogen subdoses (C) inside the subplots are, respectively for each subplot, 0, 20 and 40 kg
ha−1. We present a SAS program for the situation just considered:

data a;
input bloque trata tratb tratc x1;
cards;
.....
.....
;
proc anova;class bloque trata tratb tratc;
model x1 = bloque trata bloque*trata tratb bloque*trab
trata*tratb bloque*trata*tratb
tratc trata*tratc tratb*tratc trata*trab*tratc;
test h=trata e=bloque*trata;
test h=tratb e=bloque*trab;
test h=trata*tratb e=bloque*trata*tratb;
run;
quit;

18



The MS and the df needed to construct the F tests are shown on Table 9. These results show
that there are significant effects on the water layer, its interaction with the soil, and the interaction
of the three factors.

Table 9: Example
Source df MS F (Pr > F )
R 1 9.4758
A 3 10.9903 26.04 (0.0119)
eA 3 0.4220
B 2 7.3937 2.91 (0.2556)
eB 2 2.5387
AB 6 11.2718 35.89 (0.0002)
eAB 6 0.3141
C 2 3.1476 2.11 (0.1432)
AC 6 2.3759 1.59 (0.1926)
BC 4 1.8678 1.25 (0.3161)
ABC 12 3.2911 2.21 (0.0479)
et 24 1.4921
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