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Assessing and Testing Fine-Tuning by Means of
Active Information

Ola Hössjer and Daniel Andrés Díaz-Pachón

Abstract—A general framework is introduced to estimate
how much external information has been infused into a search
algorithm, the so-called active information. This is rephrased as
a test of fine-tuning, where tuning corresponds to the amount
of pre-specified knowledge that the algorithm makes use of. We
introduce a function f that quantifies tuning for each possible
outcome of a search. It is possible to use f to exponentially
tilt the distribution of the outcome of the search algorithm
under the null distribution of no tuning, so that a class of
distributions is obtained with a parameter θ that quantifies how
tuned an algorithm is. We demonstrate that such algorithms can
be obtained by iterating a Metropolis-Hastings type of Markov
chain. This makes it possible to compute the active information
of these algorithms under equilibrium and non-equilibrium of
the Markov chain, with or without stopping when the targeted
set of fine-tuned states has been reached. Nonparametric and
parametric estimators of active information and tests of fine-
tuning are developed when repeated and independent outcomes
of the algorithm are available. The theory is illustrated by means
of a population genetic example with molecular machines, which
is related to a Moran model.

Index Terms—Active information, exponential tilting, fine-
tuning, functional information, large deviations, Markov chains,
Metropolis-Hastings, Moran model, statistical estimation and
testing.

I. INTRODUCTION

WHEN Gödel published his incompleteness theorems
[1], there was a commotion in the mathematical world

from which it has neither yet recovered nor fully assimilated
the consequences [2]. Hilbert’s program and the mammoth
Principia Mathematica of Bertrand Russell and Alfred North
Whitehead were shattered to pieces by the implication that
no finite set of axioms in a formal system can prove all
its true statements, including its own consistency. In similar
but lesser scale, when David Wolpert and William MacReady
published their No Free Lunch Theorems (NFLTs, [3], [4]),
there was disquiet in the community because these results
imply that there is no one-size-fit-all algorithm that can
do well in all searches [5], throwing away the dream of
a “theory of everything” in machine learning. One of the
original conclusions of Wolpert and MacReady was that it was
necessary to incorporate “problem-specific knowledge into
the behavior of the algorithm” [4]. Thus active information
(actinfo) was introduced in order to measure the amount of
information carried by such problem-specific knowledge [6],

O. Hössjer is with the Department of Mathematics, Stockholm University,
106 91 Stockholm, Sweden (e-mail: ola@math.su.se)

D. A. Díaz-Pachón is with the Division of Biostatistics, University of
Miami, Don Soffer Clinical Research Center, 1120 NW 14th St, Miami Fl,
33136, USA (e-mail: Ddiaz3@miami.edu)

[7]. More specifically, the NFLTs say that no search works
better on average than a blind search, i.e., a search according
to a uniform distribution. Accordingly, actinfo was originally
defined as

I+ = log
P (A)

P0(A)
, (1)

where A ⊂ Ω is a non-empty target, a subset of the finite
sample space Ω, and P0 is a uniform probability measure
(P0(A) = |A|/|Ω|). P must be seen here as the probability
measure induced by the problem-specific knowledge of the
researcher, whereas P0 is the underlying distribution assumed
in the NFLTs. Suppose we do not know whether problem
specific knowledge has been used or not when the random
search X ∈ Ω was generated. This corresponds to a hypothesis
testing problem

H0 : X ∼ P0,
H1 : X ∼ P, (2)

where data is generated from distributions P0 and P under
the null and alternative hypotheses H0 and H1, respectively.
Moreover, I+ is the log likelihood ratio when testing H0

against H1, if data is censored so that only X ∈ A is known.
When the sample space Ω is finite or a bounded

subset of a Euclidean space, it is well known that the
uniform distribution maximizes Shannon entropy. However,
the uniform distribution is not a feasible choice of P0 for
unbounded samples spaces. For this reason actinfo has been
generalized to deal with unbounded spaces [8], by choosing P0

to maximize Shannon entropy under side constraints, such as
existence of various moments. Actinfo has also been used for
mode detection [9], [10] in unsupervised learning, among other
applications. In one recent development, based on previous
work by Montañez [11], Díaz-Pachón, Sáenz, and Rao made
actinfo a tool for hypothesis testing [12]. More specifically,
they regarded P as a random measure, so that the actinfo
quantity I+ is random as well, and found expressions for the
tail probability of I+.

In this article we will use actinfo to test the presence of and
estimate the degree of fine-tuning (FT). FT was introduced by
Carter [13] in physics and cosmology. According to FT, the
constants in the laws of nature and/or the boundary conditions
in the standard models of physics must belong to intervals of
low probability in order for life to exist. Since its inception,
FT has generated a great deal of fascination, seen in multiple
divulgation books (e.g., [14]–[17]) and scientific articles (e.g.,
[18]–[21]). For a given constant of nature, the FT problem can
be divided into two stages:
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(i) Establishing the life-permitting interval (LPI) that allows
the existence of life for the constant.

(ii) Determining the probability of such LPI.

As Adams noticed though, there have been great advances
in step (i) but step (ii) is not as well-developed [21]. One of
the problems with step (ii) is that most attempts have placed
the LPI’s in finite subspaces of the Euclidean space, where
Bernoulli’s Principle of Insufficient Reason (PoIR) does not
operate [22], [23]. It was therefore necessary to find a different
approach, similar to the one used when actinfo was generalized
to unbounded spaces, removing the burden from the PoIR and
placing it on the maximum entropy principle [8]. Using also
Bayes theory, such was the strategy adopted in [24].

In [24] it was also observed that step (i) belongs to physics,
while step (ii) is mathematical. By this is meant that it is
physical theories that are going to determine what is the
length of the LPI, while finding the probability of the LPI is
mainly a mathematical task. This observation has at least two
implications. First, it allows to see the connection between FT
and search problems. In fact, the LPI for a particular constant
of nature is a particular case of a target A in (1), whereas
X is the value of this constant of nature for a randomly
generated universe. Therefore, techniques used to analyze
search problems can also be used for FT. We exploit such
a connection in this article, providing a general framework
for using actinfo in order to assess the degree of FT. The
second implication is that FT can be applied to other realms
of science. For instance in biology, Dingjan and Futerman
have already explored the FT of cell membranes [25], [26].
Following [27], we continue here this trend by illustrating our
theoretical developments with biological applications.

Our article is organized as follows. In Section II we
introduce a function f such that f(x) tells how specified
each state x ∈ Ω is, or how tuned the output x of an
algorithm is. This is used in order to interpret I+ in (1)
as a test statistic of fine-tuning that quantifies how much
a search algorithm reduces functional information. Then in
Section III we introduce a class of probability distributions
that involves a parameter θ that quantifies how much problem-
specific knowledge has been infused into the search algorithm.
We demonstrate that it is possible to obtain such a search
algorithm by means of a Metropolis-Hastings type of Markov
chain. In Sections IV-V we evaluate the corresponding actinfo
under equilibrium and non-equilibrium of this Markov chain,
with our without stopping when the targeted set of fine-
tuned states has been reached. Nonparametric and parametric
estimators of actinfo and tests of FT are proposed in Section
VI, when n repeated and independent outputs of the search
algorithm are available. In particular, we use large deviations
theory to prove that the significance levels of these tests, i.e.
the probability to detect FT under H0, goes to zero at an
exponential rate when the sample size n increases. In Section
VII we present a population genetics example of molecular
machines that is related to the Moran model. A discussion
in Section VIII concludes. Proofs of results are gathered in
Section IX.

II. ACTIVE INFORMATION AND FINE-TUNING

Consider a function f : Ω → R, and assume that the
objective of the search algorithm is to find regions in Ω
where f is large. The rationale for this is an independent
specification, where a more specified state x ∈ Ω corresponds
to a larger f(x). We will also say that the larger f(x) is, the
more tuned an algorithm with outcome x is in terms of finding
pre-specified states of large f . For this reason f(x) will also
be referred to as the degree of tuning associated with x. It is
further assumed that the target set in (1) has the form

A = {x ∈ Ω; f(x) ≥ f(x0)}. (3)

This implies that the purpose of the search algorithm is
to find highly specified states. For instance, in cosmology x
corresponds to the value of a particular constant of nature,
whereas f is a binary function such that f(x) = 1 or 0
depending on whether x permits a universe with life or not.
From this it follows that, if f(x0) = 1, A is the LPI of this
constant. Moreover, X is the value of this constant of nature
for a randomly generated universe, with a distribution that
either incorporates external information (H1) or not (H0).

In a second example from biology, we take x to be an amino
acid sequence, f(x) is the functionality of the protein that
the amino acid corresponds to, and X is the outcome of a
random evolutionary process, the goal of which is to generate
a functioning protein. This process either makes use of external
information (H1) or not (H0). In Section VII we give a more
refined biological example, where x corresponds to a protein
complex or a molecular machine.

There are at least two ways of interpreting x0. According to
the first interpretation, x0 is the outcome of random variable
X ′ ∈ Ω; that is, the outcome of a first search. Suppose X
is another random variable that represents a second (possibly
future) search, independent of X ′. Then, if we condition on
the outcome x0 of the first search,

I+ = logP (A)− logP0(A)

= If0 − If (4)

is the log likelihood ratio for the event that the second
search variable X is at least as tuned as the observed
value f(x0) of the first search. The corresponding p-value
P0(A) = P0(f(X) ≥ f(x0)) was used in [27] as a measure
of FT. It is closely related to the functional information
If0 = − logP0(A) that appears in the last line of (4), and
it represents the number of nats of information, under H0, for
X to function at least as well as x0 (i.e. f(X) ≥ f(x0)). This
quantity was proposed by Szostak and collaborators in the
context of finding amino acid sequences x that correspond to
functional proteins [28], [29]. The corresponding functional
information If = − logP (A) under H1 is analogously
interpreted as the number of nats of information that the event
f(X) ≥ f(x0) mediates under H1. If I+ > 0, so that X ∈ A
is more likely to occur under H1 compared to H0, then actinfo
quantifies how much more functional information is attained
by observing X ∈ A under H0 than under H1. In particular,
when X ∈ A is observed with certainty under H1, so that
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If = 0, then actinfo coincides with the functional information
under H0.

It is not necessary though to associate x0 in (3) with a
first search variable X ′. Instead we may use some apriori
information in order to define which values of f represent
a high amount of tuning. This gives rise to the second
interpretation of x0, according to which x0 is used for defining
outcomes that are finely and coarsely tuned respectively,
with f0 = f(x0) a lower bound of FT. According to this
interpretation, the two sets A in (3) and its complement

Ac = Ω \A = {x; f(x) < f(x0)}

represent a dichotomization of tuning, so that A and Ac consist
of all states that are finely or coarsely tuned, respectively. With
this interpretation of x, I+ is the log likelihood ratio for testing
FT based on the search variable X . In particular, suppose that
the specificity function f is bounded, i.e.

fmax = max
x∈Ω

f(x) <∞. (5)

Then the most stringent definition of FT

f0 = fmax, (6)

only regards outcomes with a maximal degree of tuning as
fine-tuned.

To be strict, x ∈ A is only a necessary condition, but not
sufficient, for x to be fine-tuned. Following [24] and [27],
FT also requires that P0(A) is small, or equivalently, that
the functional information of A is large. For simplicity of
presentation we will however simply speak of A as the set of
fine-tuned states, with an implicit understanding that P0(A) is
small.

III. ACTIVE INFORMATION FOR SYSTEMS IN EQUILIBRIUM

In order to calculate I+ we need to specify P0 and P ,
the distributions of the random search algorithm under H0

and H1, respectively. The null distribution P0 is typically
chosen according to some criterion, such as a maximizer of
entropy, possibly with some extra constraints on moments
for unbounded Ω, such was the strategy implemented in
[24]. Another possibility is to choose P0 as the equilibrium
distribution of a Markov chain that models the dynamics of the
system under the null hypothesis, for instance an evolutionary
process with no external input.

Although the choice of P is problem specific, one option
is to define it as an exponentially tilted version P = Pθ of
P0 for some θ > 0. Exponential tilting is often used for rare
events simulation [30], [31]. Here we use f to define the tilted
version of P0 as

Pθ(x) =
eθf(x)

M(θ)
P0(x), (7)

with

M(θ) =
∑
x∈Ω

eθf(x)P0(x) (8)

a normalizing constant assuring that Pθ is a probability
measure. For finite sample spaces Ω, we interpret P0(x) and

Pθ(x) as probabilities, whereas for continuous sample spaces
they are probability densities, and then the sum in (8) is
replaced by an integral. The larger the tilting parameter θ > 0
is, the more the probability mass of Pθ concentrates on regions
of large f . In particular, P∞ is supported on the set

Ωmax = {x ∈ Ω; f(x) = fmax}

whenever (5) holds.
The parametric family

P = {Pθ; θ ≥ 0} (9)

of distributions is an exponential family [32, Section 1.5], and
each Pθ ∈ P gives rise to a separate version of actinfo. This
is summarized in the following proposition:

Proposition 1. Suppose the target set A is defined as in (3) for
some x0 ∈ Ω such that P0(A) > 0. Then Pθ(A) is a strictly
increasing function of θ ≥ 0 with P∞(A) = 1. Consequently,
the actinfo

I+(θ) = log
Pθ(A)

P0(A)
(10)

is a strictly increasing function of θ ≥ 0, with I+(0) = 0 and
I+(∞) = If0 = − logP0(A).

The intuitive interpretation of Proposition 1 is that the larger
θ, the more problem specific knowledge is infused into Pθ in
terms of shifting probability mass towards regions in Ω where
f , the specificity function, is large.

Inspired by Markov Chain Monte Carlo methods [33], it is
possible to define an irreducible Markov chain X0, X1, . . . ∈
Ω for which Pθ is the equilibrium distribution. Consequently,
if P = Pθ (that is, under the alternative hypothesis H1 in
(2) when θ > 0), we may interpret X = Xt as an outcome
after t iterations of the Markov chain, provided t is so large
that equilibrium has been reached. If the Markov chain has an
equilibrium distribution (7), it will favor jumps towards regions
of large f when θ > 0, more so the higher the value of θ is.
In more detail, the transition kernel of the chain is an instance
of the well-known Metropolis-Hastings (MH) algorithm [34],
[35], which is closely related to simulated annealing [36]. This
kernel has a probability or density

πθ(x, y) = rθ(x)δ(x, y) + αθ(x, y)q(x, y) (11)

for jumps from x to y, where δ(x, ·) is a point mass at x ∈
Ω, q(x, ·) is a proposal distribution of jumps from a current
position x of the Markov chain,

αθ(x, y) = min

[
1,
eθf(y)P0(y)q(y, x)

eθf(x)P0(x)q(x, y)

]
(12)

is the probability of accepting a proposed move from x to y,
whereas

rθ(x) = 1−
∑
y∈Ω

αθ(x, y)q(x, y) (13)

is the probability that the Markov chain rejects a proposed
move away from x (for continuous sample spaces q(x, ·) is a
probability density and then the sum in (13) is replaced by an
integral). The transition of the Markov chain from Xt = x to
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the next state Xt+1 is described in two steps as follows. First
a candidate Y ∼ q(x, ·) is proposed. Then in the second step
this candidate is either accepted with probability αθ(x, Y ), so
that Xt+1 = Y , or it is rejected with probability 1−αθ(x, Y ),
so that Xt+1 = Xt. It is well known that Pθ is the equilibrium
distribution of this Markov chain whenever it is irreducible,
that is, provided the proposal distribution q is defined in such
a way that it is possible to move between any pair of states
in Ω in a finite number of steps [37, pp. 243-245].

Notice in particular that if q is symmetric and P0 is
uniform, then a proposed upward move with f(Y ) > f(x)
and Pθ(Y ) > Pθ(x) is always accepted, whereas a proposed
downward move with f(Y ) < f(x) is accepted with
probability Pθ(Y )/Pθ(x). The Markov chain only makes local
jumps if q(x, ·) puts all its probability mass in a small
neighborhood of x, for any x ∈ Ω. At the other extreme
is a chain with the global proposal distribution q(x, ·) ∼ Pθ
for any x ∈ Ω. It is easy to see that all proposed jumps of
this chain are accepted (α(x, y) = 1), and that {Xt}∞t=1 is
a sequence of independent and identically distributed (i.i.d.)
random variables with Xt ∼ Pθ.

IV. ACTIVE INFORMATION FOR SYSTEMS IN
NON-EQUILIBRIUM

Suppose for simplicity that the sample space Ω is finite, and
that the states in Ω are listed in some order. Let

P0 = (P0(x); x ∈ Ω) (14)

be a row vector of length |Ω| with all the null distribution
probabilities, and let

Πθ = (πθ(x, y);x, y ∈ Ω) (15)

be a square matrix of order |Ω| that defines the transition kernel
of the Markov chain {Xt}∞t=0 of Section III. If X0 ∼ P0, then
by the Kolmogorov-Chapman equation it follows that Xt ∼
Pθt, where

(Pθt(x);x ∈ Ω) = Pθt = P0Π
t
θ. (16)

Hence, if P = Pθt, then X = Xt corresponds to observing
the Markov chain at time t, under the alternative hypothesis
H1 in (2). Some basic properties of the corresponding actinfo
are summarized in the following proposition:

Proposition 2. Suppose X = Xt is obtained by iterating
t times a Markov chain with initial distribution (14) and
transition kernel (15). The actinfo then equals

I+(θ, t) = log
Pθt(A)

P0(A)
= log

P0Π
t
θv

P0v
, (17)

where v is a column vector of length |Ω| with ones in positions
x ∈ A and zeros in positions x ∈ Ac. In particular, I+(θ, 0) =
0 and

lim
t→∞

I+(θ, t) = I+(θ). (18)

Notice that I+(θ, t) > 0 corresponds to knowledge of f
being used to generate t jumps of the Markov chain, under
the alternative hypothesis H1 in (2).

V. ACTIVE INFORMATION FOR SYSTEMS WITH STOPPING

In Section IV we assumed that P ∼ Pθt was obtained by
starting a random search with null distribution P0, and then
iterating the Markov chain of Section III t times. It is possible
though to utilize knowledge of f even more and to stop the
Markov chain if the target A in (3) is reached before time t.
This can be formalized by introducing the stopping time

T = min{t ≥ 0; Xt ∈ A} (19)

and letting

Pθts(x) = P (Xt∧T = x) (20)

be the probability distribution of the stopped Markov chain
Xt∧T , with the last index s in (20) being an acronym for
stopping. In particular,

Pθts(A) =
∑
x∈A

Pθts(x) = P (T ≤ t) (21)

is the probability of reaching the target A for the first time after
t iterations or earlier. It is possible to use the theory of phase-
type distributions in order to compute the target probability
Pθts(A) in (20) [38], [39]. To this end, we clump all states
x ∈ A into one absorbing state, and decompose the transition
kernel in (15) according to

Πθ =

(
Πna
θ Πna,a

θ

0 1

)
, (22)

where Πna
θ is a square matrix of order |Ac| containing the

transition probabilities between all non-absorbing states in Ac,
whereas Πna,a

θ is a column vector of length |Ac| with transition
probabilities π(x,A) from all the non-absorbing states x ∈ Ac
into the absorbing state A. Moreover, Pna

0 = (P0(x); x ∈ Ac)
is a row vector of length |Ac| that is the restriction of the
start-distribution P0 in (14) to all non-absorbing states. It then
follows that

Pθts(A) = 1−Pna
0 (Πna

θ )t1, (23)

where 1 is a column vector of |Ac| ones.
After these preliminaries, we are ready to define the actinfo

I+
s of a search procedure with stopping:

Proposition 3. Suppose X = Xt is obtained by iterating
a Markov chain with initial distribution (14) and transition
kernel (15) (for some θ ≥ 0) at most t times, and stopping
whenever the set A is reached. Then the actinfo is given by

I+
s (θ, t) = log

Pθts(A)

P0(A)
= log

1−Pna
0 (Πna

θ )t1

P0v
, (24)

with P0 and v as in Proposition 2, whereas Pna
0 , Πna

θ , and 1
are defined below (22) and (23). This actinfo satisfies

I+
s (θ, t) ≥ I+(θ, t) (25)

and I+
s (θ, t) is a non-decreasing function of t such that

lim
t→∞

I+
s (θ, t) = If0 (26)

and
∞∑
t=0

(
1− P0(A)eI

+
s (θ,t)

)
= E(T ). (27)
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Inequality (25) states that, for a search procedure with t
iterations, knowledge about f that is used for stopping the
Markov chain in (15) will increase the actinfo, regardless
of whether knowledge about f was used (θ > 0) or not
(θ = 0) when iterating the Markov chain. Equation (26)
is a consequence of the fact that the target A is reached
eventually with probability 1, so that the actinfo of a search
procedure with stopping equals the functional information
If0 = − logP0(A) after many iterations of the Markov
chain. Moreover, equation (27) tells that the rate at which
P0(A)eI

+
s (θ,t) approaches 1 is determined by the expected

waiting time E(T ) of reaching the target.
We conclude from Proposition 3 that actinfo, for a system

with stopping, is closely related to the phase-type distribution
of the waiting time T until the target is reached. This has been
studied in [40], in the context of gene expression of a number
of genes, with x the collection of regulatory regions of all
these genes.

VI. ESTIMATING ACTIVE INFORMATION AND TESTING
FINE-TUNING

Suppose it is possible to repeat the random search algorithm
independently but under the same conditions n times. This
corresponds to a sequence X1, . . . , Xn of i.i.d random
variables Xi ∼ Q. With repeated experiments, the analogue
of the hypothesis testing problem (2) is

H0 : Q = P0,
H1 : Q = P.

(28)

Whereas the null distribution P0 is known, we will assume
that P is unknown, apart from the fact that P (A) > P0(A),
so that I+ > 0 in (1). For this reason an estimate Q̂(A) of
the target probability P (A) is computed from data, with an
associated empirical actinfo

Î+ = Î+
n = log

Q̂(A)

P0(A)
. (29)

If Q̂(A) is a consistent estimator of Q(A), then for large
sample sizes Î+ will be close to

I+
Q = log

Q(A)

P0(A)
, (30)

which equals 0 under H0. Let I be the indicator function. The
simplest and nonparametric version of the empirical actinfo
makes use of the fraction

Q̂(A) =
1

n

n∑
i=1

I(Xi ∈ A) (31)

of random searches that fall into A as an estimate of Q(A).
In order to test H0 against H1 we

Reject H0 when Î+ ≥ Imin, (32)

with a threshold

0 < Imin = log
pmin

P0(A)
< I+ (33)

that is the minimal amount of actinfo that the test detects, and
with P0(A) < pmin < P (A) the corresponding lower bound
of the target probability that the test detects.

The following result establishes asymptotic normality of the
estimator Î+ and, moreover, the theory of large deviations is
used to show that the significance level of the nonparametric
test of actinfo goes to zero exponentially fast with n [41]:

Proposition 4. Suppose the empirical actinfo Î+ in (29) is
computed non-parametrically using (31) as an estimate of the
target probability Q(A). Then Î+ is an asymptotically normal
estimator of I+

Q in (30), in the sense that

√
n(Î+

n − I+
Q)

L−→ N(0, V ) as n→∞, (34)

where L−→ refers to convergence in distribution, and

V =
1−Q(A)

Q(A)
(35)

is the variance of the limiting normal distribution. The
significance level of the test (32) for actinfo satisfies

lim
n→∞

−
log
(
PH0(Î+ ≥ Imin)

)
n

= C, (36)

where Imin is the threshold of the test, defined in (33), and

C = pmin log
pmin

P0(A)
+ (1− pmin) log

1− pmin

1− P0(A)
(37)

is the Kullback-Leibler divergence (41) between Bernoulli
distributions with success probabilities pmin and P0(A)
respectively.

Remark 1. The conclusion of Proposition 4 is that the
probability of observing actinfo by chance decays at rate e−Cn

when the sample size n gets large.

Suppose we have a priori knowledge that P is close to the
parametric exponential family P of distributions in (9) for
some θ > 0. It is natural then to define a parametric test
of actinfo. For this we first need to compute the maximum
likelihood estimate

θ̂ = θ̂n = arg max
θ≥0

n∑
i=1

logPθ(Xi) (38)

of the tilting parameter θ. This makes it possible to define a
parametric estimate

Q̂(A) = Pθ̂(A) (39)

of the target probability Q(A) that is inserted into (29) in order
to define a parametric version of the empirical actinfo Î+.

To analyze the properties of the estimator (29) and test (32),
we first need to introduce

θ∗ = arg min
θ≥0

DKL(Q ‖ Pθ), (40)

where

DKL(Q ‖ Pθ) =
∑
x∈Ω

Q(x) log
Q(x)

Pθ(x)
(41)
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is the Kullback-Leibler divergence between Q and Pθ. It
follows from (40) that Pθ∗ is the distribution in P that best
approximates Q. In particular, θ∗ = θ if Q = Pθ for some
θ ≥ 0.

The following proposition shows that Î+ is an
asymptotically normal estimator of I+(θ∗) in (10), which
differs from I+

Q in (30) whenever Q /∈ P . Moreover, the
proposition also provides large sample properties of the
significance level of the test for actinfo:

Proposition 5. Suppose the empirical actinfo Î+ in (29)
is computed parametrically, using an estimate (39) of the
target probability Q(A). Then Î+ is an asymptotically normal
estimator of I+(θ∗), in the sense that

√
n
(
Î+
n − I+(θ∗)

)
L−→ N(0, V ) as n→∞, (42)

where the variance of the limiting normal distribution is given
by

V =
Cov2

Pθ∗
[f(X)I(f(X) ≥ f0)] VarQ [f(X)]

P 2
θ∗(A)Var 2

Pθ∗
[f(X)]

. (43)

Moreover, the significance level of the parametric test for
actinfo, based on (29), (33), and (39), satisfies

lim
n→∞

−
log
[
PH0

(
Î+ ≥ Imin

)]
n

= C, (44)

where

C = sup
φ>0
{φEPmin [f(X)]− logM(φ)} , (45)

with Pmin = Pθmin , θmin < θ∗ is the solution of Pθmin(A) = pmin,
and M(φ) is defined in (8).

The two versions of empirical actinfo are complementary.
The nonparametric version is preferable in the sense that
it makes less assumptions about the distribution P of the
random algorithm under H1, and in particular it is a consistent
estimator of I+

Q in (30). The parametric version of Î+, on
the other hand, is preferable when nQ(A) is small, since it
makes use of all data in order to estimate Q(A), although it is
not a consistent estimator of I+

Q when Q /∈ P . Note that the
asymptotic variances in (35) and (43), as well as the rates of
exponential significance level decrease in (37) an (45), agree
when Q = Pθ∗ and f(x) = f0I(x ∈ A), which is a special
case of (6).

VII. EXAMPLE

Assume that Ω consists of all 2d binary sequences x =
(x1, . . . , xd) of length d, with a null distribution P0(x) that
will be chosen below. The specificity function f is defined as

f(x) =

{
a|x|, x 6= (1, . . . , 1),
1, x = (1, . . . , 1),

(46)

where |x| =
∑d
i=1 xi and a ≤ 1/d is a fixed parameter.

We regard x as a molecular machine with d parts, with
xi = 1 or 0 depending on whether part i functions or
not. The specificity f(x) quantifies how well the machine
works, for instance its ability to regulate activity in vitro or

in vivo in a living cell. We assume that f(x) is determined
by the number |x| of functioning parts, with a maximal
value fmax = f(1, . . . , 1) = 1. Using (6), the most stringent
definition of FT, it follows that A = {(1, . . . , 1)} only contains
one element, a molecular machine for which all parts are in
shape. The parameter a is crucial. If 0 < a ≤ 1/d, it follows
that a molecular machine works better the more of the parts
that are in shape. On the other hand, if a < 0, then a molecular
machine with some parts in shape, but not all, functions worse
the more of the parts that are in shape, since all units must
work in order for the whole machine to function, and there is
a cost −a associated with carrying each part that is in shape,
as long as the whole system does not function.

It is possible to interpret each state x as a population of
N subjects, all having the same variant x of the molecular
machine, and X being the outcome of a random evolutionary
process, the purpose of which is to modify the population so
that all its members have a functioning molecular machine. A
transition of this process from x is caused by a mutation with
distribution q(x, ·), where q(x, x) = 0. Suppose a mutation
from x to y is possible, i.e., q(x, y) > 0. A mutation from
x to y first occurs in one individual and then it either dies
out with probability 1 − αθ(x, y) or it spreads to the whole
population (gets fixed) with probability

αθ(x, y) = C ·
(
eθf(y)P0(y)q(y, x)

eθf(x)P0(x)q(x, y)

)1/2

, (47)

where

C =

(
max
x,y

eθf(y)P0(y)q(y, x)

eθf(x)P0(x)q(x, y)

)−1/2

(48)

is a constant assuring that (47) never exceeds 1, and the
maximum is taken over all x, y such that x 6= y and both
of q(x, y) and q(y, x) are positive. The Markov chain with
transition probabilities (11) and acceptance probability (47)
represent the dynamics of the evolutionary process.

We show in Section IX that the equilibrium distribution
of this Markov chain is given by Pθ in (7). In particular,
Propositions 2–3 remain valid when the Markov chain (11)
with acceptance probabilities (47) are used, rather than (12).
We will interpret

s(x) = eθf(x)/N (49)

as the selection coefficient or fitness of individuals with a
molecular machine of type x, that is, s(x) is proportional to
the fertility rate of individuals of type x.

In order to further motivate that the MH-type Markov
chain with acceptance probability (47)–(48) represents an
evolutionary process, we will show that it closely resembles
a Moran model with selection [42]–[44], which is frequently
used for describing evolutionary processes. The Moran model
is a continuous time Markov chain for a population with
overlapping generations where individuals die at the same rate,
and are replaced by offspring of individuals in the population
proportionally to their selection coefficients s(x). New types
arise when an offspring of parents of type x mutate with
probability µ(x). If the mutation rate is small (µ(x) � N−1
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for all x ∈ Ω), then to a good approximation the whole
population will have the same type at any point in time, a
so called fixed state assumption.

Even though the Moran model is specified in continuous
time, it is possible to discretize time as t = 0, 1, 2, . . . by only
recording the population when individuals die. If individuals
die at rate 1, this means that the next individual dies at rate
N , so that time is counted in units of N−1 generations. The
fixed state assumption is motivated by assuming that newborn
offspring with a new mutation either dies out or spreads to the
whole population (get fixed in the population) right after birth.
In this context, q corresponds to the way in which mutations
change the type of the individual, whereas αθ = αθN is the
probability of fixation. If q(x, y) is the conditional probability
that an offspring of a type x parent mutates to y, given that a
mutation occurs, then the proposal kernel of the Moran model
is

qMoran(x, y) =

{
µ(x)q(x, y), x 6= y,
1− µ(x), x = y.

(50)

It is shown in Section IX that the acceptance (or fixation)
probability of the Moran model is

αMoran
θN (x, y) ≈ 1

N

(
1 +

θ[f(y)− f(x)]

2

)
≈ 1

N

(
eθf(y)

eθf(x)

)1/2

(51)

when θ[f(y) − f(x)] is small. It follows from (50)-(51) that
the Moran model approximates the Metropolis-Hastings kernel
with acceptance probabilities (47)-(48) with good accuracy
when i) µ(x) ≡ µ, ii) P0 is uniform and iii) the proposal kernel
q is symmetric (i.e. q(x, y) = q(y, x)), although the time scales
of the two processes are different. More specifically, if i)-iii)
hold, a time-shifted version of the Moran model approximates
the MH-type model with acceptance probabilities (47)-(48), so
that each time step of the MH-type Markov chain corresponds
to C/µ generations of a Moran model. However, even under
assumptions i)-iii) the stationary distribution of the Moran
model differs slightly from Pθ.

We will assume that the proposal kernel q(x, y) is local and
satisfies

q(x, y) =

 b/[|x|+ b(d− |x|)], y = x+ ej , xj = 0,
1/[|x|+ b(d− |x|)], y = x+ ej , xj = 1,
0, otherwise,

(52)

where ej = (0, . . . , 0, 1, 0, . . . , 0) is a row vector of length
d with a 1 in position j ∈ {1, . . . , d} and zeros elsewhere,
whereas x+ ej refers to component-wise addition modulo 2,
corresponding to a switch of component j of x. A change of
component j from 0 to 1 is caused by a beneficial mutation,
whereas a change from 1 to 0 corresponds to a deleterious
mutation. Consequently, b > 0 is the ratio between the rates
at which beneficial and deleterious mutations occur.

Notice that the kernel q in (52) is symmetric only when
beneficial and deleterious mutations have the same rate (b =
1). The more general case of asymmetric q is handled
differently by the MH-type algorithm and the Moran model.
Whereas the MH-type algorithm elevates the acceptance

Fig. 1. Plot of I+(θ) as a function of θ for a system of molecular machines
with d = 5 components, b = 1.0, and a = −0.2 (dash-dotted), a = 0
(solid) and a = 0.2 (dashed). The horizontal dotted line corresponds to the
functional information If0 = 3.47.

probability (47) of seldom-proposed states y (those y for
which q(x, y) is small for many x), this is not the case for
the acceptance probability (51) of the Moran model. In order
for the MH-type algorithm to avoid that these states y are
reached too often, the null distribution P0 of no selection has
to be chosen so that P0(y) is small for rarely proposed states
(whereas the Moran models needs no such correction). We
will therefore choose P0 in (47) as the stationary distribution
of a transition kernel (11) for which θ = 0 and all candidates
are accepted (α0(x, y) = 1). That is, if Π̃0 refers to the
transition matrix of such a Markov chain, we choose the initial
distribution P0 in (14) as the solution of{

P0 = P0Π̃0,∑
x∈Ω P0(x) = 1.

(53)

In the special case when beneficial and deleterious
mutations have the same rate (b = 1), this procedure generates
a uniform distribution P0(x) ≡ 2−d. On the other hand, states
x with many functioning parts will be harder to reach by
the Markov process Π̃0 when beneficial mutations occur less
frequently than deleterious ones (0 < b < 1), resulting in
smaller values of P0(x).

Here we will study the case d = 5, as illustrated in Figures
1-3. Note that the functional information If0 is a decreasing
function of b, since it is more surprising to find a working
molecular machine by chance when the rate of beneficial
mutations b is small. Moreover, the active information I+(θ)
for the equilibrium distribution of the Markov chain as well
as the active informations I+(θ, t) and I+

s (θ, t) for a system
in non-equilibrium, without and with stopping, are increasing
functions of θ, and decreasing functions of a and b. The
smaller a or b is, the more external information can be infused
in order to increase the probability of reaching the fine-tuned
state of a working molecular machine (1, . . . , 1). When a
is small it is more difficult to leave this state once it is
reached, and consequently I+

s (θ, t) is only marginally larger
than I(θ, t).

VIII. DISCUSSION

In this article we provide a general statistical framework
for using active information in order to quantify the amount
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Fig. 2. Plot of I+(θ) as a function of θ for a system of molecular machines
with d = 5 components, b = 0.5, and a = −0.2 (dash-dotted), a = 0
(solid) and a = 0.2 (dashed). The horizontal dotted line corresponds to the
functional information If0 = 5.09.

(a) (b)

(c) (d)

Fig. 3. Plot of I+(θ, t) (dashed) and I+s (θ, t) (solid) as a function of t
for a system of molecular machines with d = 5 components and θ = 2.5.
The upper (lower) row corresponds to b = 1 (b = 0.5), whereas the left
(right) column corresponds to a = 0.2 and a = −0.2. The horizontal lines
in each figure illustrate I+(θ) (dash-dotted) and the functional information
If0 (dotted).

of pre-specified external knowledge an algorithm makes use
of, or equivalently, how tuned the algorithm is. Our theory
is based on quantifying for each state x how specified it
is by means of a real-valued function f(x). This makes it
possible to introduce an exponential family of distributions
for the random outcome of an algorithm, and a corresponding
Metropolis-Hastings Markov chain for how the outcome of the
algorithm was generated, with or without stopping, when the
targeted set of fine-tuned states is reached. We also developed
nonparametric and parametric estimators of the actinfo of the
algorithm, when independent outcomes of it are available, as
well as nonparametric and parametric tests of FT.

As for the example, this is the first time that, to our
knowledge, actinfo is applied to the Moran model. In the
past though, actinfo was used in population genetics to study
fixation times for the Wright-Fisher model of population
genetics, a model for which time is discrete and generations
do not overlap [45].

It is possible to extend our work in different ways. A first
extension would be to find conditions under which the actinfo
I+(θ, t) of a stochastic algorithm based on a random start
(according to the null distribution of a non-guided algorithm)
followed by t iterations of the Metropolis-Hastings Markov
chain (without stopping) is a non-decreasing function of t. We
conjecture that this is typically the case but have not obtained
any general conditions on the distribution q of proposed
candidates for this result to hold.

A second extension is to widen the notion of specificity
f(x), so that not only the functionality but also the rarity of
the outcome x is taken into account. A class of such specificity
functions is

gθ(x) = θf(x)− logP0(x), (54)

where θ > 0 is a parameter that controls the tradeoff between
scenarios where either function or rarity is the most important
determinant of specificity. The case θ = 0 corresponds to
function having no impact, so that g0(x) reduces to Shannon’s
self information of x. The case g1(x) was proposed in [11],
whereas gθ(x) is solely determined by f(x) in the limit when
θ gets large.

A third extension is to generalize the notion of actinfo to
include not only the probability of reaching a targeted set of
fine-tuned states A under H0 and H1, but also account for the
conditional distribution of the states within A, given that A has
been reached. This is related to the way in which functional
sequence complexity generalizes functional information [46]–
[49]. Let H(Q) = −

∑
xQ(x) log[Q(x)] refer to the Shannon

entropy of a distribution Q, whereas H(QA) is the Shannon
entropy of the corresponding conditional distribution QA(x) =
Q(x|A), given that A has been reached. The functional
sequence complexity

FSC0 = H(P0)−H(P0A)

= EP0 {log[P0(X | A)] | X ∈ A} − EP0{log[P0(X)]}

is the reduction in entropy, under the null hypothesis H0 of
the fine-tuned states in A, compared to the entropy under H0

of all states in Ω. It can be seen that FSC0 reduces to the
functional information If0 when P0 is uniform over Ω. In a
similar vein, we introduce the active uncertainty reduction

UR+ =
∑
x∈A

PA(x) logP (x)−
∑
x∈A

P0A(x) logP0(x)

= EP [logP (X)|X ∈ A]− EP0
[logP0(X)|X ∈ A].

One notices that UR+ = I+ when P0A and PA are
uniformly distributed on A. This happens, for instance, when
P0 has a uniform distribution on Ω and P = Pθ for some
θ > 0, and if (6) holds. It would be of interest to analyze the
properties of UR+ in more detail, for instance investigate how
it differs from the actinfo I+.

A fourth extension is to consider vector-valued objective
functions f : Ω→ RN , so that

f(x) = (f1(x), . . . , fN (x)).

This is frequently used in genetic programming [50], as well
as for other types of evolutionary programming algorithms
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[51], in order to mimic the evolution of N individuals
over time. These algorithms typically have a sample space
Ω = ΩNind, where x = (x1, . . . , xN ) represents variants of
some genomic region for N individuals, and with xi ∈ Ωind
the variant of this genomic region for individual i. The
components fi(x) = g(xi) of the objective function are
interpreted as the biological fitness g(xi) for each individual
i. Typically, the output X = Xt of the evolutionary algorithm
is the last step of a simulation X0, . . . , Xt of the population
over t generations. If B ⊂ RN corresponds to a targeted set of
fitness profiles of the population, the corresponding targeted
subset of the sample space is

A = {x ∈ Ω; f(x) ∈ B}. (55)

Once the distributions P0 and P of X are found under
the null and alternative hypotheses, it is possible to compute
the actinfo I+ in (1). A typical target set A consists of all
populations x for which the average fitness is at least as large
as a lower threshold f0, i.e.

B = {f ∈ RN ; f̄ =
1

N

N∑
i=1

fi ≥ f0}. (56)

Notice also that the fixed state assumption of Section VII,
according to which all individuals have the same genetic
variant, corresponds to a scenario where P0 and P put all
their probability masses along the diagonal

Ωdiag = {x ∈ Ω; x1 = . . . = xN}

of Ω. In particular, the target set (55)-(56) reduces to (3) (with
g(x) in place of f(x)) under such a fixed state assumption.

As a fifth extension, there is sometimes ambiguity in
choosing the null distribution of X . For instance, in [24],
P0 was chosen as a maximum entropy distribution with an
unknown constraint on its first one or two moments. More
generally, if θ0 is used to parametrize all possible distributions
Pθ0 under H0, then

P̂0(A) = max
θ0

Pθ0(A)

gives a conservative upper bound on the target probability
P0(A) under the null hypothesis. Replacing P0(A) by P̂0(A),
we thus get a conservative lower bound on the functional
information If0 as well as the active information I+.

IX. PROOFS

Proof of Proposition 1:
Introduce

J(θ) =
∑
x∈Ac

exp{θ[f(x)− f(x0)]}P0(x),

K(θ) =
∑
x∈A

exp{θ[f(x)− f(x0)]}P0(x),
(57)

when Ω is finite, and replace the sums in (57) by integrals
when Ω is continuous. Then

Pθ(A) = exp[θf(x0)]K(θ)/{exp(θf(x0))[J(θ) +K(θ)]}
= K(θ)/[J(θ) +K(θ)] (58)
= 1/[J(θ)/K(θ) + 1].

Since P0(A) < 1, it follows that J(θ) is a strictly decreasing
function of θ ≥ 0, whereas K(θ) is a non-decreasing function
of θ. From this, it follows that Pθ(A) is a strictly increasing
function of θ, and consequently I+(θ) = log[Pθ(A)/P0(A)]
is a strictly increasing function of θ as well.

Moreover, K(θ) ≥ P0(A) > 0 for all θ ≥ 0, and J(θ)→ 0
as θ →∞ follows by dominated convergence. In conjunction
with (58) this implies Pθ(A) → 1 and I+(θ) → If0 as θ →
∞.

Proof of Proposition 2:
Equation (17) follows from (14), (16) and the fact that

P0(A) =
∑
x∈A

P0(x) = P0v,

Pθt(A) =
∑
x∈A

Pθt(x) = Pθtv = P0Π
t
θv,

since v is a column vector of length |Ω| with ones in positions
x ∈ A and zeros in positions x ∈ Ac.

Equation (18) is equivalent to proving that

Pθt(A)→ Pθ(A) as t→∞.

But this follows from the fact that Pθ is the equilibrium
distribution of the Markov chain with transition kernel (15).
That is, letting t→∞ in (16) we find that

Pθt = P0Π
t
θ → Pθ,

and therefore

Pθt(A) = Pθtv→ Pθv = Pθ(A), as t→∞.

Proof of Proposition 3:
Equation (25) follows from the definitions of I+(θ, t) and

I+
s (θ, t) in (17) and (24), and the fact that

Pθt(A) = P (Xt ∈ A) ≤ P (Xt∧T ∈ A) = Pθts(A),

where the inequality is a consequence of the definition of T
in (19). Since

Pθts(A) = P (T ≤ t) ≤ P (T ≤ t+ 1) = Pθ,t+1,s(A),

we have proved that I+
s (θ, t) is non-decreasing in t. Equation

(26) follows from the definition of I+
s (θ, t) and the fact that

lim
t→∞

Pθts(A) = P (T <∞) = 1. (59)

The last equality of (59) is a consequence of the fact that
the Markov chain with transition kernel Πθ is irreducible, so
that any state x ∈ Ω will be reached with probability 1. In
particular, the targeted set A will be reached with probability
1. In order to verify (27), we first deduce

P (T > t) = 1− P0(A)eI
+
s (θ,t)

from (21), and then we make use of the equality

E(T ) =

∞∑
t=0

P (T > t).

Proof of Proposition 4:



10

Since nQ̂(A) ∼ Bin(n,Q(A)) has a binomial distribution,
it follows from the Central Limit Theorem that
√
n(Q̂(A)−Q(A))

L−→ N(0, Q(A)[1−Q(A)]), (60)

as n → ∞. Notice that Î+ = g(Q̂(A)), where g(Q) =
log[Q/P0(A)] and g′(Q) = 1/Q. Equation (34) follows from
the Delta Method (see, e.g., Theorem 8.12 of [32]) and the
fact that

V = g′(A)2 ·Q(A)[1−Q(A)].

In order to establish (36), to begin with, it follows from (29)
and (33) that

PH0(Î+ ≥ Imin) = PH0(Q̂(A) ≥ pmin)

= PH0

(
1

n

n∑
i=1

Yi ≥ pmin

)
,

where Yi = I(Xi ∈ A) ∼ Be(p0) are independent Bernoulli
variables under H0 with success probability p0 = P0(A). It
follows from Large Deviations theory that (36) holds, with

C = sup
φ>0

[φpmin − λ(φ)] (61)

the Legendre-Fenchel transformation, and

λ(φ) = logE[exp(φY )] = log[1 + p0(eφ − 1)] (62)

the cumulant generating function of Y [52, pp. 529-533].
Inserting (62) into (61) it can be seen that the maximum in
(61) is given by (37).

Proof of Proposition 5: In order to verify (42), we will
first show that the estimator (38) of the tilting parameter θ is
asymptotically normal

√
n(θ̂n − θ∗)

L−→ N(0, U) as n→∞, (63)

with asymptotic variance

U =
VarQ[f(X)]

Var 2
Pθ∗

[f(X)]
. (64)

To this end, let ′ refer to derivatives with respect to the
tilting parameter θ. Define the score function

ψθ(x) =
d logPθ(x)

dθ
=
P ′θ(x)

Pθ(x)

and its derivative

ψ′θ(x) =
dψθ(x)

dθ
.

It is a standard result from the asymptotic theory of
maximum likelihood estimation and M -estimation (see,
e.g., Chapter 6 of [32]) that (63) holds with asymptotic
variance

U =
VarQ[ψθ∗(X)]

E2
Q[ψ′θ∗(X)]

. (65)

To simplify (65), notice that the score function can be
written as

ψθ(x) = f(x)− M ′(θ)

M(θ)
= f(x)− EPθ [f(X)] (66)

for the exponential family of tilted distributions (7)-(8). From
this it follows that

ψ′θ(x) =
M ′′(θ)

M(θ)
−
(
M ′(θ)

M(θ)

)2

= VarPθ [f(X)]

is a constant, not depending on x. Inserting the last two
displayed equations into (65), the formula in (64) for the
asymptotic variance of θ̂ is obtained. As a next step we notice
that

Î+ = g(θ̂), (67)

where

g(θ) = log
Pθ(A)

P0(A)
= log h(θ)− logP0(A), (68)

and

h(θ) = Pθ(A) =

∑
x∈A e

θf(x)P0(x)dx

M(θ)
(69)

follows from the definition of Pθ(x) in (7).
Differentiating (69) with respect to θ, we find that

h′(θ) =
∑
x∈A

f(x)eθf(x)P0(x)dx/M(θ)

−M ′(θ)
∑
x∈A

eθf(x)P0(x)dx/M2(θ). (70)

And it follows from the RHS of (70) that

h′(θ) = EPθ [f(X)I(f(X) ≥ f0)]− Pθ(A)EPθ [f(X)]

= CovPθ [f(X), I(f(X) ≥ f0)].
(71)

Then we combine (68) and (70), and obtain

g′(θ) =
h′(θ)

h(θ)
=

CovPθ [f(X), I(f(X) ≥ f0)]

Pθ(A)
. (72)

Finally we use the Delta Method to conclude that Î+ is an
asymptotic normal estimator (34) of I+(θ∗), with asymptotic
variance V = g′(θ∗)2U , which, in view of (64) and (72),
agrees with (43).

In order to prove the large deviation result (44) for the
parametric test of FT, let θmin be the value of the tilting
parameter that satisfies Pθmin(A) = pmin. Then notice that

PH0(Î+ ≥ Imin) = PH0(Q̂(A) ≥ pmin)

= PH0(θ̂ ≥ θmin)

= PH0
(

n∑
i=1

ψθmin(Xi)/n ≥ 0)

= PH0

(
n∑
i=1

f(Xi)/n ≥ Epmin [f(X)]

)
,

where in the third step we utilized that θ̂ ≥ θmin is equivalent
to the derivative of the log likelihood of data being non-
negative at θmin, and in the fourth step we made use of (66) and
introduced pmin = Pθmin . But this last line is a large deviations
probability. It then follows from large deviations theory that
(44) holds, with C the Legendre-Fenchel transformation in
(45).

Details from Section VII:
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In order to prove that the Metropolis-Hastings type Markov
chain (11) with acceptance probabilities (47) has equilibrium
distribution Pθ, we first notice that for any pair of states x 6= y,
the flow of probability mass

Pθ(x)πθ(x, y)

= Pθ(x)q(x, y)αθ(x, y)

=
P0(x)eθf(x)

M(θ)
q(x, y) · C

[
eθf(y)P0(y)q(y, x)

eθf(x)P0(x)q(x, y)

]1/2

= C

(
eθf(x)P0(x)q(x, y)eθf(y)P0(y)q(y, x)

)1/2
M(θ)

(73)

from x to y is symmetric with respect to x and y. Therefore,
the flow Pθ(y)πθ(y, x) of probability mass in the opposite
direction, from y to x, is the same as in (73). A Markov chain
with this property is called reversible [53, pp. 11-12]. But it is
well known that Pθ is a stationary distribution if the Markov
chain is reversible with reversible measure Pθ [54, p. 238].
If, additionally, the proposal distribution q is such that it is
possible to move between any pair of states in a finite number
of steps, it follows that the Markov chain is irreducible and
hence that Pθ is its unique stationary distribution, which is also
the equilibrium distribution of the Markov chain [54, p. 232].

Next we will motivate formula (51) for the acceptance
probability of a Moran model. Assume that the population
evolves over time as a Moran model, and that all individuals
have type x. If one individual mutates from x to y, because
of (49), the relative fitness between the N − 1 individuals of
type x and the newly mutated individual of type y is

s =
eθf(y)/N

eθf(x)/N
= eθ[f(y)−f(x)]/N . (74)

From the theory of Moran models (e.g., [40], [55]), it is
well known that the fixation probability for the newly mutated
individual is

βN (s) =

{
(1− s−1)/(1− s−N ), s 6= 1,
1/N, s = 1.

(75)

Inserting (74) into (75) we find (when s 6= 1, or equivalently
when ∆ = θ[f(y)− f(x)] 6= 0), that

βN (s) =
1− e−∆/N

1− e−∆
≈ 1

N
· ∆

1− e−∆
≈ 1

N
· (1 +

∆

2
),

which is equivalent to (51).
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